Dynamic Resource Provisioning
in Grid Environments

loan Raicu’, Catalin Dumitrescu®, and lan Foster"??

Abstract — Batch schedulers commonly used to manage access to parallel computing clusters are not typically configured to enable easy configuration
of application-specific scheduling policies. In addition, their sophisticated scheduling algorithms can be relatively expensive to execute. Thus, for example,
applications that require the rapid execution of many small tasks often do not perform well. Frey proposed that these problems be overcome by separating
the two tasks of provisioning and scheduling. The provisioning component uses batch submissions (Condor “schedd” services in Frey’s work) to acquire
resources for application execution. The scheduling component dispatches application tasks to those resources. We introduce here a dynamic resource
provisioning Web Services-based architecture, DRP, and use this architecture to evaluate new methods designed to optimize both the dynamic resource
provisioning and task scheduling within dynamically provisioning resource sets. The task scheduling is implemented in a separate system DeeF, a
distributed execution environment framework, which has DRP integrated to offer the necessary dynamic resource provisioning for generic execution of
arbitrary codes on the DRP managed resources. Based on our performance evaluation, DRP can allocate resources in less than a minute after which a
pool of resources can be maintained, increased, and decreased based on the load of the application using DRP. Our execution framework DeeF can
process 100K fine granular tasks in 160 seconds; in such a high throughput workload, the overhead per task is 1.6 ms per task, a low enough cost that
DeeF and DRP can enable a wide range of applications to run significantly more efficiently, due to efficient task dispatch and the dynamic resource
provisioning that makes the compute resource management trivial from the application’s viewpoint. We also address the performance implications various
security mechanisms have on the execution framework and the dynamic resource provisioning.

Index Terms— dynamic resource provisioning, batch scheduler, interactive resource usage, Grid computing

batch scheduling environments. A partial solution to this

1 Introduction
problem is to configure a new queue with appropriate policy:

The increased scale of Grid [1] systems calls for minimizing the eg, to run all jobs from a certain user or application

immediately. However, such reconfiguration can be difficult in
practice, for administrative reasons. In addition, the need
remains for each user task to be submitted to the batch
scheduler.

needs for human supervision and for automating and
delegating as many management tasks as possible. We believe
that the larger Grid systems get, the more important it will be
to provide different for different
applications and users.

scheduling policies

An alternative approach, pioneered by Frey [3], avoids the
need for reconfiguration of queues by submitting one or more
requests for nodes and then deploying on those nodes software

Individual clusters in Grid environments such as TeraGrid [2]
are typically managed by separate batch-queue schedulers,

each of which implements a local space-sharing policy. A task
submitted to a queue wait until suitable resources become
available. If the request cannot be satisfied in its entirety, the
time in queue can be variable and/or long—in many cases
longer than the execution time itself.

Batch schedulers typically permit the configuration of queues
that support a wide range of policies. Nevertheless, for any
particular set of queue configurations, it will often be the case
that 1) a user or application wants a different policy than is
configured at a specific scheduler, and/or 2) the overhead of
running the full queue processing on each job is high relative
to the cost of executing the job. Even in an idle system (with
zero queue wait time), complete scheduling (job submission,
en-queuing, de-queuing, and starting of execution) can take
30~60 seconds, a relatively high cost for many small jobs.

The key issue we address in this paper is how to support the
efficient execution of large numbers of small tasks in such

! Department of Computer Science, University of Chicago, IL, USA

2 Computation Institute, University of Chicago & Argonne National
Laboratory, USA

3 Math & Computer Science Division, Argonne National Laboratory,
Argonne IL, USA

that implements a domain-specific scheduling strategy. By thus
embedding a new scheduler inside the old, we separate the
two tasks of resource provisioning (acquiring the resources
needed for a computation) and scheduling (mapping tasks to
those resources). In this way, we can address both of the
concerns expressed in the second paragraph.

We can further refine resource provisioning by allowing the
system to resize the set of resources it manages dynamically,
for example by adding resources when demand is high, and
releasing resources when demand is low. We term this method
dynamic resource provisioning. Dynamic resource provisioning
can be useful when either resource demand or resource
availability varies during the course of program or workload
execution, in which case we can improve execution times
and/or the efficiency of resource utilization.

Resource provisioning methods have been explored by many
researchers [3 - 9], as we review in Section 2 below. In our
work, we seek to improve the performance of these methods
by addressing both:

o Efficient provisioning: i.e., efficient strategies for acquiring
and releasing resources; and

o Efficient scheduling: i.e., efficient methods for dispatching
requests to individual processors.

To this end, we define and implement an architecture that
permits the embedding of different provisioning and
scheduling strategies; implement a range of provisioning
strategies, and evaluate their performance in some preliminary
studies; and implement and evaluate the performance of a
scheduling strategy. We show that our system performs better
by factors of more than 10 for small tasks, relative to other
dynamic provisioning approaches.

The rest of the paper is organized as follows: Section 2 covers
the related work, Section 3 covers our dynamic resource
provisioning architecture and performance evaluation, Section
4 covers the distributed execution environment framework and
the performance evaluation, and Section 5 discusses the
conclusions and future work.

2 Related Work

Frey and his pioneered the separation of
provisioning and scheduling that we explore here via their
work on Condor “glide-ins” in the late 1990s. The first
published reference of which we are aware is Frey et al. [3].
Requests to a remote computer (submitted, for example, via
Globus GRAM) are used to start “startd” services, which then
Condor resource manager that
independently of the original batch scheduler.

colleagues

register with a runs

Appleby et al. [4] were one of several groups to explore
dynamic resource provisioning techniques within the context
of a data center.

Singh et al. investigate, via simulations, the performance
Their
simulations were performed using the Maui simulator over a
workload trace collected from the NCSA TeraGrid cluster and
13 workflows. Their results show in general a reduction of
about 50% in workflow completion time when using
provisioning over no provisioning.

impact of resource provisioning on workflows [5].

The MyCluster system [6] uses batch job submissions to deploy
either Condor or Sun Grid Engine (SGE) services that then
assemble into “personal clusters” running Condor or SGE.

Mehta et al. [7] use similar techniques to embed a Condor pool
in a batch-scheduled cluster. However, they do not address
dynamic behaviors, and have relatively high overhead when
compared to our implementation.

Ramakrishnan et al. [8] also address resource provisioning.
they make the
resources are dedicated and available indefinitely, which is not
the case in most batch-scheduled clusters. Their proposed
solutions would have to be modified to be functional in most
Grid systems.

However, simplifying assumption that

Bresnahan et al. [9] describe a
architecture specialized for the dynamic allocation of compute

resource provisioning

cluster bandwidth. A modified Globus GridFTP server
supports the dynamic allocation of GridFTP data movers
under server load. In contrast, our work supports the
scheduling of any application.

3 Dynamic Resource Provisioning

As illustrated in Figure 1, our DRP system comprises: (1)
user(s); (2) a DRP Utilizing application (in our case a Web
Service); (3) the DRP Web Service; (4) a GRAM Web Service;
and (5) a resource pool. The interaction between these various
components is as follows.

Grid Resource Allocation and Manage\

DRP Web Service GRAM Web Service

» EPR=Create()
« | StartUp(EPR, Config, Rules)
v o ShutDown(EPR)
 Destroy(EPR)

Resource Monitor
» ¥ Resource Properties
.

* Standard GRAM WS Interface

Resource Manager =7
Provision Resources

Resource Allocation / De-Allocation

Resource

DRP Utilizing
Web Service
[y \
Y
* Initialize

>

\ o Result = Process(work)
"
0y

Worker registration /
d <

Work Dispatch

SState
Resource Properties

Figure 1: Dynamic Resource Provisioning Architecture

The DRP utilizing application initializes the DRP Web Service
with a set of configuration parameters. These parameters
include: the state that needs to be monitored and how to access
it, the rule(s) and conditions under which DRP should
allocate/de-allocate resources, the location of the worker code
that is specific to the DRP utilizing application, the
minimum/maximum number of resources it should allocate,
the minimum/maximum length of time resources should be
allocated for, and the allowed idle time per resource before
resources are de-allocated. Once the DRP Web Service was
initialized, the application would be ready to interact with its
users and process work.

The users submit work to their application, which internally
queues up the work making it ready for processing by a
worker resource. The DRP Web Service monitors the internal
queue state of the application, and based on the rules and
conditions from the initialization phase, the DRP Web Service
makes the decision how many resources and for how long to
allocate. In our implementation, these resources are allocated
using GRAM in order to abstract away all the local resource
managers that could be used in Grids (PBS, LSF, Condor, etc).
GRAM is used to bootstrap the worker starter code that is
specific to the DRP utilizing application, which then registers
with the application and becomes ready to process work. Once
the application has workers available for work, it sends
notifications directly to workers that work is available for
pickup, after which the workers that received the notifications
contact the application directly to pick up the relevant work.

While these worker resources are available (which is dictated
by the resource de-allocation policies), any subsequent work
requests from the user can simply use the same resources that
have already been allocated (according to the resource
allocation policy), without the need to go through the entire
allocation process. We provide more details on the work
dispatcher and worker starter in a more general sense in
Section 4 when we discuss a generic distributed execution
environment framework which takes the place of the DRP
utilizing application from this section.

A specific instantiation of this architecture must specify a
resource acquisition policy and a resource release policy, which we
discuss in the next sub-section.

3.1 Resource Acquisition/Release Policies

A resource acquisition policy decides when and how to acquire
new resources. This policy determines the state information
that will be used to trigger new resource acquisitions (e.g., “if
task queue length increases, acquire more resources”). It also
determines the number of resources to acquire based on the
appropriate state information, as well as the length of time for
which the resources should be required. In our implementation
of DRP, we rely on WS-GRAM [10] bundled with the Globus
Toolkit 4 [11] for the coarse-grained resource allocation.

Having decided that n resources should be acquired, we then
need to determine what request(s) to generate to the LRM to
acquire those resources. We consider five different strategies in
the work presented here.

The first strategy, Optimal, assumes that we can query the
resource manager to determine the maximum number of
resources available to us. We then simply request that number
if it is less than 1, and request n otherwise.

The other strategies assume that we cannot obtain this
maximum number via a query. In the One-at-a-time strategy,
we submit n requests for a single resource. In the All-at-once
strategy, we issue a single request for n resources. In the
Additive, strategy, for i=1, 2, ..., the ith request requests i
resources; thus, ‘(Jgn+ _1)/2‘
allocate n resources. Finally, in the Exponential strategy, for
i=1, 2, ..., the ith request requests 2! resources. Thus,
|_log2 (n+ 1)—| requests are required to allocate # resources.

requests are required to

Just as we have acquisition policies, we also need resource
release policies. ~We distinguish between two classes of
resource release policy (centralized and distributed), used to
decide when to release already acquired resources.

In a centralized policy, decisions are made at a central location
based on state information available at that location. For
example: “if there are no tasks to process, release all
and “if the number of queued tasks is less than g,
release a resource.”

’

resources,”

In a distributed policy, decisions are made at individual
resources based on state information available at the resource.
For example: “if the resource has been idle for time t, the
acquired resource should release itself.”

Note that resource acquisition and release policies are typically
not independent: in most batch schedulers, one must release all
resources obtained in a single request at once.

3.2 DRP Performance Evaluation

We use two metrics to evaluate our DRP system: Provisioning
Latency (i.e., the time required to obtain all required resources)
and Accumulated CPU Time (i.e., the total CPU time obtained
since the first request to the DRP system). We expect these
metrics to help us identify the best dynamic resource
provisioning strategies in real world systems (i.e. TeraGrid).

We perform experiments in two scenarios on the ANL/UC
TeraGrid site, which has 96 IA32 processors and is managed by
the PBS local resource manager. In the first case, the site is
relatively idle with only 2 of the 96 resources utilized; these
results are shown in solid lines in Figure 2. Thus, our requests
(for up to 48 resources) can be served “immediately.” Due to
PBS overheads, it takes about 40 seconds for the first resource
to be allocated in all cases, despite the queue being idle; we
observed this overhead vary between 30 seconds to as high as
100 seconds in other experiments we performed. Figure 2 shows
the number of worker resources that have registered back at
the application and are ready to receive work as the
experiment time progressed; this time includes several steps:
time to allocate the resources with GRAM, time needed to
coordinate between GRAM and PBS the resource allocation,
time PBS needed to prepare the physical resource for use, time
needed to start up the worker code, and the time needed for
the worker code to register back at the main application.

We see that the one-at-a-time strategy is the slowest, due to the
high number of batch scheduler submissions: it takes 105
seconds to allocate all 48 resources vs. 22 to 36 seconds for the
other strategies. Note that the accumulated CPU time after 3
minutes of the experiment for one-at-a-time is almost 30 CPU
minutes behind the other strategies.

In a more realistic setting, sites are rarely idle, and hence some
resource requests will end up waiting in the local resource
manager’s queue. To explore this case, we consider a scenario
in which the site has only 47 resources available until the 160
second mark, at which point availability increases to 48; these
results are shown in dotted lines in Figure 2. Thus, each strategy
has their last resource request held in the wait queue until the
160 second mark. Those last requests are for 1, 3, 17, and 48
resources for One-at-a-time, Additive, Exponential, and All-at-
once, respectively. On one extreme, the 1-at-a-time strategy
manages to allocate 47 resources and has only 1 resource in the
waiting queue; the other extreme, the all-at-once strategy has
all 48 resources in the waiting queue waiting for a single
resource to free up before it can process the entire request.
This is evidence of the back-filling strategies of the local

resource manager. Therefore, the all-at-once is now the worst
overall, being over 60 CPU minutes behind One-at-a-time and
Exponential, and almost 90 CPU minutes behind Additive.
Note that these lags in accumulated CPU time will remain until
the resources begin to de-allocate, at which time the strategies
that received their resources later will also hang on to the
resources later; in the end, all strategies should get the same
accumulated CPU time eventually.

50

=]-at-a-time (idle)

45 4==additive (idle) =
exponential (idle) | 3

40 1 all-at-once (idle) [T
1

35 = = l-at-a-time (busy)

= = additive (busy) :
30 4 exponential (busy) |
b

all-at-once (busy)

25 1= - optimal (busy) Ir,r
1
20 '

Number of Resources

Time (sec)

Figure 2: Provisioning latency in acquiring 48 resources for various
strategies; the solid lines represent the time to acquire the resources in
an idle system, while the dotted lines is the time to acquire the resources
in a busy system

Table 1: Accumulated CPU time in seconds after 180 seconds in both an
idle and busy system

Strategy AccumulalgeliiECPU Time AccumuIaBtlng;JPU Time
1-at-a-time 4220 sec 4205 sec

additive 6048 sec 5773 sec
exponential 5702 sec 4267 sec
all-at-once 6156 sec 409 sec

optimal 6059 sec 6059 sec

We conclude that different provisioning strategies must be
used depending on how utilized a given set of resources are,
with the all-at-once strategy being preferred if the resources are
mostly idle, the additive and exponential strategies being
appropriate for medium loaded resources, and the one-at-a-
time being preferred when the resources are heavily loaded.
Note that the finer grained the request sizes, the more likely it
will be that DRP will be able to benefit from the back-filling of
the local resource managers, but the higher the cost will be in
terms of how fast the resources can be allocated. Notice

Another important issue, not addressed in this work, concerns
the length of time for which resources should be requested.
Many batch schedulers give preference to short requests and/or
can schedule short requests into empty slots in their schedule
(what is termed “backfilling”). Short requests may also
minimize idle time. On the other hand, short requests increase
more scheduling overhead and may cause problems for long-
running user tasks. We envision the length of time to allocate

resources to be application dependent, depending on the tasks
complexity and granularity. Ideally, the length of time
resources are allocated for should be large enough to ensure
that several tasks can be performed on each resource,
effectively amortizing the cost of the queue wait times for the
coarse granular resource allocation.

4 A Distributed Execution Framework

DRP implements provisioning logic that maintains a pool of
workers. To use DRP for a specific application, we must
supply a worker implementation and a scheduler to dispatch

tasks to workers.

We have integrated the DRP mechanism in an astronomy
application called AstroPortal [12, 13] that performs the
“stacking” analysis to the SDSS DR5 dataset. A user of the
AstroPortal submits a stacking analysis which can be broken
down into independent tasks (i.e. reading a region of interest
[ROI] from the image data, calibration of the ROI, stackings of
multiple ROIs, etc). These independent tasks are queued up in
the AstroPortal, the DRP component allocates
resources, and the worker resources process the tasks, which
are later aggregate at the AstroPortal into the final result that is
presented back to the user.

worker

To show the suitability of DRP in a broader context, we have
also developed a more general-purpose DRP-based distributed
execution environment framework (DeeF), that allows the
dispatch of arbitrary “tasks” to DRP-managed workers. We
described DeeF in this section.

4.1 Architecture

As shown in Figure 3, DeeF comprises a server , the DeeF Web
Service, which receives tasks from users, dispatches tasks to
workers, collates results, and returns results to users, and a set
of workers (created by DRP) that know how to execute tasks.
Both the client interface to the server and all inter-component
communication are Web Services (WS) based. The server runs
within a Globus Toolkit 4 [11] container.

As shown in Figure 4, the server implements the classic
factory/instance pattern, in which a factory service provides a
create resource operation to allow a clean separation between
multiple users of the service. To access DeeF, a user first
requests creation of a new resource, to which is returned a
unique endpoint reference (EPR) as a handle. The user can then
use that EPR to submit tasks, monitor task progress, retrieve
task results, and destroy the resource when it is no longer
needed.

The worker code simply needs to register with the DeeF Web
Service after which it will receive notifications of tasks that
need to be processed, and where (which specific resource
identified by the EPR) the tasks should be retrieved from.

The DeeF Web Service “submit tasks” interface takes as input
an array of tasks, each specifying working directory, command
to execute,

arguments, and any required environment

variables; it returns an array of outputs, each comprising the

original task that was run, the return code of the task, STDOUT
contents, and STDERR contents.

The WSDL interface is easily extensible to support new
features, such as user hints that can make the execution of tasks
over These hints
information such as the names of data files that will be needed
during task execution which could be used by a data caching
mechanism, the expected execution time for each task, etc. We
plan to integrate these hints in future revisions of DeeF, as well
as other hints we find useful as we get DeeF and DRP
integrated in other projects.

Ly

DeeF more efficient. could include

Grid Site

Compute ¢
Resolrces..

Dynamic
Resource
Provisionix

Work Queue

Resource_1 Refource_n

Notification Engine
Registered Workers

DeeF Web Service

Figure 4: The DeeF Web Service implementation overview

Finally, as have built the DeeF and DRP prototypes using the
Globus Toolkit, so we can easily leverage the Grid Security
Infrastructure (GSI) to provide the various components of our
systems transport-level security and message-level security; for
each level, there three
authentication, integrity, and encryption of the data channels.
The details of each of these security mechanisms are outside
the scope of this paper, and we refer the readers to the Globus
Toolkit 4 Grid security infrastructure overview [14].

security are main options:

4.2 DeeF Performance Evaluation

In order to test the overhead and efficiency of our execution
environment, as well as the responsiveness of the DRP system,
we executed a collection of 100K executables through DeeF

without any security enabled and measured various metrics.
The executable we ran was “/bin/echo.” 100K “/bin/echo”
executions required only 1.706 seconds on a single machine
(2.4GHz Intel Xeon) when run from a local script.

We ran the same 100K executables through DeeF on the
ANL/UC TeraGrid site with the following configuration:
minimum number of resources set to 0, maximum number of
resources to allocate was 48, DRP allocation strategy was all-at-
once, and the ANL/UC site was relatively idle with more than
48 available resources. The user code had three main phases,
which were overlapped in three different threads: sending
tasks, processing tasks, and receiving task results.
shows the throughput of the various phases and overlapping

Figure 5

as time progresses.

Overall

Average | Average | Average

Amortized

Send Processing | Receive | Throughput T T
Throughput | Throughput | Throughput ("‘C\lv':‘""ﬁ:;;m
5000 1 | 1315.8 /sec | 1888.6/sec | 2170.2/sec | 626.3/sec 1.6 ms - 7150
1 |
4500 + Send Throughput 45
= Process Throughput
4000 ! 40
3 » Receive Throughput
3500 4—|— Number of Workers 35
= Send Throughput Average §
§ 3000 —+—==Process Throughput Average 30 ‘g
B —— Receive Throughput Average " §
g 2500 25
° 2
- [
2000 - 20
2.
L] =1
» * . z
:1500* - 2 5. - .. T A 15
= A SR D A RIS S fw e AR
1000 1+, ~ 3 + ~ = B 10
LA N A A T reg LI *
e T N SrFIANI R E
! Py .
B P N i e 5
Y AN o T o 4
0 Sow 4 0

T T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Time (sec)

Figure 5: Performance evaluation of the DeeF framework with no
security enabled

The 100K executables were completed in 159.75 seconds, which
means the overall throughput was 626 tasks/sec, and the cost
per task was 1.6 ms/task. This 1.6 ms/task is the overhead we
expect to have when high throughput (and short lived) tasks
are executed through DeeF. If a single task is submitted to
DeeF that has workers already registered, the cost/task is about
200 ms, which is the upper bound we expect to have for any
given task execution without security. With security enabled,
the cost/task ranges from 750 ms to 1900 ms depending on the
security technology used and level of security employed.

Finally, we wanted to compare our performance results
directly with those of MyCluster, as it is the closest system at a
functional level to our proposed DeeF system integrated with
DRP. For our experiment, we configure DRP to allocate only
one resource for the duration of the experiment; we then
submit 30 tasks, each with a run time of 60 seconds, to DeeF.
The total turnaround time, from time of first task submission to
the time of last task completion, is then measured. We
experimented with various secure and unsecure
communication protocols in order to quantify the various
overheads for our system, which can be used to directly
compare our system’s overhead with that of MyCluster.

Table 2: DeeF overhead for various levels of security

Total Time Overhead
(sec) %
Tasks Execution 1800 0.00%
No Security 1806.16 0.34%
GSI Transport
(Authentication) 1819.43 1.08%
GSI Transport o
(Authentication + Encryption) 1820.64 1.15%
GSI Secure Conversation o
(Authentication) 1825.56 142%
GSI Secure Conversation
(Authentication + Encryption) 1829.38 1.63%
GSI Secure Message
(Authentication) 1837.58 2.09%
GSI Secure Message
(Authentication + Encryption) 1840.58 2.:25%

Table 2 shows the summary of the DeeF overhead for the
various levels of security. The execution time for DeeF to run
this 30 task workload took 1806.16 seconds without any
security. The ideal time with no overhead would have been
30*60 = 1800 seconds, so we computed our overhead to be 6.16
seconds or 0.34%. The most lightweight security mechanism
we have available in GT4 is GSI transport security with
authentication, which is the same level of security used in
MyCluster. The MyCluster overhead ranged from 5% to 25%
depending on which underlying scheduling technology they
used (Condor or SGE respectively). We consider our over head
to be substantially lower, with overheads ranging from 1.08%
to 2.09% for the various authentication mechanisms. Notice
that even with GSI secure message with encryption (GT4's
most expensive security mechanism), we are still only at 2.25%
overhead. It also interesting to note that encryption does not
significantly increase the overhead for our simple example in
which we have small messages being exchanged between the
various components; we expect the encryption costs to increase
if the input and/or output of each task becomes of significant
size.

5 Conclusions and Future Work

Dynamic resource provisioning can lead to significant savings
in end-to-end application execution time, enable the use of
batch-scheduled Grids for interactive use, and alleviate the
high queue wait times typically found in production clusters.
We have described a resource provisioning
architecture and presented preliminary performance results on
the TeraGrid. We have also integrated DRP into DeeF, a
distributed execution environment framework that would

dynamic

allow the execution of programs across a set of resources
managed by DRP, and measured its performance which we
presented in this paper.

We have integrated our DRP implementation with an
astronomy application, AstroPortal [12, 13]. We have already
begun the integration of the DRP functionality and DeeF into
the Swift science and engineering workflow system [15] to

enable workflows to decrease the ratio between queue wait
times and the component execution time, which can be high
when workflows are composed of many components. Finally,
we plan on extending DRP to use multiple TeraGrid sites,
allowing application that use DRP to transparently run across
geographically distributed resources potentially harnessing
hundreds to thousands of resources nationwide.

References

[1] I Foster, C. Kesselman, S. Tuecke, "The Anatomy of the Grid",
International Supercomputing Applications, 2001.

[2] TeraGrid, http://www.teragrid.org/

[3] J. Frey, T. Tannenbaum, I. Foster, M. Frey, and S. Tuecke,
"Condor-G: A Computation Management Agent for Multi-
Institutional Grids," Cluster Computing, vol. 5, pp. 237-246,
2002.

[4] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar,
S. Krishnakumar, D. Pazel,]J. Pershing, and B. Rochwerger,
"Oceano - SLA Based Management of a Computing Utility," in
7th IFIP/IEEE International Symposium on Integrated
Network Management, 2001.

[5] G.Singh, C. Kesselman and E. Deelman. “Performance Impact
of Resource Provisioning on Workflows”, ISI Technical Report
2006.

[6] E.Walker, J. P. Gardner, V. Litvin, and E. L. Turner, “Creating
Personal Adaptive Clusters for Managing Scientific Jobs in a
Distributed Computing Environment”, Workshop on
Challenges of Large Applications in Distributed
Environments, July 2006.

[7] G. Mehta, C. Kesselman, E. Deelman. “Dynamic Deployment
of VO-specific Schedulers on Managed Resources,” USC
Information Sciences Institute, 2006.

[8] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin, A.
Yumerefendi, J. Chase. Toward a Doctrine of Containment:
Grid Hosting with Adaptive Resource Control, IEEE/ACM
SuperComputing 2006.

[9] J. Bresnahan, I. Foster. “An Architecture for Dynamic
Allocation of Compute Cluster Bandwidth”, MS Thesis,
Department of Computer Science, University of Chicago,
December 2006.

[10] M. Feller, I. Foster, and S. Martin. “GT4 GRAM: A
Functionality and Performance Study”, submitted to TeraGrid
07.

[11] I. Foster, "Globus Toolkit Version 4: Software for Service-
Oriented Systems," in IFIP International Conference on
Network and Parallel Computing, 2005, pp. 2-13.

[12] I. Raicu, I. Foster, A. Szalay. “Harnessing Grid Resources to
Enable the Dynamic Analysis of Large Astronomy Datasets”,
IEEE/ACM SuperComputing 2006.

[13] L Raicu, I. Foster, A. Szalay, G. Turcu. “AstroPortal: A Science
Gateway for Large-scale Astronomy Data Analysis”, TeraGrid
Conference 2006, June 2006.

[14] The Globus Security Team. Globus Toolkit Version 4 Grid
Security Infrastructure: A Standards Perspective, Technical
Report, Argonne National Laboratory, MCS, September 2005.

[15] 1. Foster, J. Voeckler, M. Wilde, Y. Zhao. “Chimera: A Virtual
Data System for Representing, Querying, and Automating
Data Derivation”, SSDBM 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

