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Abstract 
 

The GridFTP extensions to the File Transfer 
Protocol define a general-purpose mechanism for 
secure, reliable, high-performance data movement. We 
report here on the Globus striped GridFTP framework, 
a set of client and server libraries designed to support 
the construction of data-intensive tools and 
applications. We describe the design of both this 
framework and a striped GridFTP server constructed 
within the framework. We show that this server is 
faster than other FTP servers in both single-process 
and striped configurations, achieving, for example, 
speeds of 27.3 Gbit/s memory-to-memory and 17 Gbit/s 
disk-to-disk over a 60 millisecond round trip time, 30 
Gbit/s network.  In another experiment, we show that 
the server can support 1800 concurrent clients without 
excessive load. We argue that this combination of 
performance and modular structure make the Globus 
GridFTP framework both a good foundation on which 
to build tools and applications, and a unique testbed 
for the study of innovative data management 
techniques and network protocols. 
 

1 Introduction 
Rapid increases in both the quantity and diversity of 

data stored on secondary and tertiary storage systems, 
and in the raw capacity of wide area networks, make it 
both desirable and feasible, in principle at least, to 
move large amounts of data across wide area networks. 
For example, the NSF TeraGrid network links large 
clusters and storage systems at nine sites with a 
network providing up to 30 Gbit/s end-to-end. In 
principle, we should be able to move data across this 
network at more than 3 Gbyte/s, or 10 Tbyte/hr. 

In practice, the orchestration of such transfers is 
technically challenging. One key issue is the frequent 
need to exploit parallelism in multiple dimensions, 
including (depending on context) storage systems, 
network interfaces, and backbone network trunks. 
Another is dealing with failures of various sorts. 
Firewalls, parallel file systems, and other specialized 
devices can also cause difficulties, as can the need to 
transform data before and/or after transfer. For these 
and other reasons, rapid, efficient, and robust wide area 
end-to-end transport requires the management of 
complex systems at multiple levels. For example, in 
recent work, we required 32 hosts connected at 1 
Gbit/s to drive a 30 Gbit/s connection. 

Effective end-to-end data transfers thus demand a 
systems approach in which file systems, computers, 
network interfaces, and network protocols are managed 
in an integrated fashion to meet performance and 
robustness goals. Furthermore, unless such approaches 
are encapsulated in software that is both easily usable 
(by end users and higher-level tools) and portable 
across different end system and network architectures, 
they will not be widely used. 

These considerations motivate the work that we 
describe here, which concerns the design, 
implementation, and evaluation of a modular and 
extensible data transfer system architecture suitable for 
wide area and high-performance environments. This 
Globus striped GridFTP framework implements the 
GridFTP extensions [7] to the File Transfer Protocol 
(FTP) [47], which provide support for striped transfers 
from multiple data sources, failure detection, and other 
features. Both the framework and a high-performance 
striped server constructed within the framework form 
part of the Globus Toolkit [25] version 4 (GT4), and 
leverage Globus components for security and I/O 
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functions.  
The Globus GridFTP framework has a modular 

structure that allows for the coordination of multiple 
data streams, the substitution of alternative transport 
protocols, and other desirable features. These features 
allow us to achieve a high fraction of end-to-end 
bandwidth over both local and wide area networks. 

In [9], we described an earlier implementation of the 
GridFTP protocol. That implementation was based on 
WU-FTPD [6] and did not have all the features of the 
protocol. Here, we discuss a completely new 
implementation of the protocol and provide an 
extensive set of performance data on the new 
implementation.  This implementation provides the 
first publicly available release of striping. Further, this 
implementation is based on Globus eXtensible 
Input/Output (XIO) system [10] and it provides several 
new clean interfaces for modifying and extending the 
server. This implementation also provides support for 
IPv6. 

The rest of this paper is as follows. After discussing 
related work, we introduce in Section 3 the 
requirements that we seek to address, and in Section 4 
review the GridFTP protocol. In Section 5, we describe 
the design of our framework and server, and in Section 
6, we present experimental results. We conclude in 
Section 7. 

2 Related Work 
The efficient movement of distributed data is not a 

new problem. Parallel I/O systems commonly treat 
access to distributed data as a collective operation [51], 
and collective communication operations seek to 
optimize data transformations and transfers by 
coordinating related activities [37, 40]. In two-phase 
I/O [50] and in Remote I/O [27], data is read and then 
reorganized via interprocess communication prior to 
transfer. HPF/MPI [23] used the FALLS (FAmiLy of 
Line Segments) representation [49] to compute 
efficient inter-cluster communication schedules.  

Researchers have come up with numerous solutions 
to address limitations of TCP’s [46] AIMD-based 
congestion control mechanism [8]. These solutions 
include improvements to TCP [21, 35, 39], new 
transport protocols such as XCP [38], XTP [54] and 
reliable layers on top of UDP [5, 15, 16, 29, 32, 35, 
53]. Our system is designed to interface to such high-
performance communication protocols and to quality 
of service negotiation systems [24]. To date, our work 
has focused on the efficient use of TCP or other 
transport protocols on a per-stream basis. Our system 
could also manage all streams associated with a single 
transfer in a coordinated manner. 

The Distributed Parallel Storage System (DPSS) 
[36] is a dynamically configurable collection of widely 
distributed disk servers that operate in parallel to 
provide high-speed random access to large data sets. 
Beck et al.’s logistical networking [12] also enables 
wide distribution (and replication) of data. Our system 
can make use of such systems when single node or site 
performance is the bottleneck.  

Thain et al. [56] and Swany [55] describe data 
movement systems that make opportunistic use of 
disks in intermediate nodes to improve end-to-end 
performance. Our system can be used to transfer data 
between nodes in the end-to-end path. 

BitTorrent [17] and Slurpie [52] allow clients to 
upload pieces of a file from multiple sources when 
multiple people are downloading the same file at the 
same time. As our system supports striping and partial 
file transfer, it could be used to good effect as a data 
transfer tool in these systems. 

Distributed file systems [33, 45] can be used to 
enable access to remote data while maintaining file 
system semantics. The General Parallel File System 
(GPFS) [3] has achieved performance comparable to 
that of our system across wide area networks. 
GridFTP, and our system, are intended for use in less 
tightly coupled environments, in which file system 
semantics may be neither achievable nor desirable. 

The work of Weigle and Chien [59] is perhaps 
closest to ours in terms of goals and approach. They 
conceptualize the M-to-N communication problem in 
terms of sets of nodes termed composite endpoints. 
They define an API for defining sender and receiver 
data distributions within composite endpoints, and 
introduce and evaluate algorithms for computing 
efficient communication schedules. Their techniques 
can integrate naturally with GridFTP. 

3 Problem Statement 
We review the requirements that motivated our 

design. 
Striping. Continued commoditization of end system 

devices means that data sources and sinks are often 
clusters. Whether data is obtained from disk, sensors, 
or computation, the “end system” that drives a wide 
area link may involve many physical devices and 
considerable internal parallelism. This parallelism may 
also extend to the external network interface: a 
common configuration might have individual nodes 
connected by 1 Gbit/s Ethernet connections to a switch 
that is itself connected to the external network at 10 
Gbit/s or faster. Thus, we wish to support striped data 
movement operations, in which data distributed across, 
or generated by, a set of computers or storage systems 
at one end of a network is transferred to another remote 
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set of storage systems or computers. 
Collective operations. While one can in principle 

express a data transfer between two clusters as a set of 
independent point-to-point transfers, it can be valuable 
to express such transfers as a single “collective” 
operation. Such an expression can permit a more 
concise description of the data transfer and provide a 
convenient logical unit for monitoring and 
management. Such an expression can also expose 
opportunities for optimization that might not be 
apparent in a set of point-to-point transfers. Thus, we 
wish to treat striped transfers as collective operations. 

Uniform interfaces. Data sources and sinks come in 
many shapes and sizes, and may include clusters with 
local disks, clusters with parallel file systems, archival 
storage systems (with or without parallel data mover 
support), and geographically distributed data sources. 
We want to make it possible for clients to access such 
sources and sinks via a uniform interface. We also 
want to make it easy to adapt our system to support 
different sinks and sources. 

Network protocol issues. The standard protocol for 
network data transfer remains TCP. However, TCP’s 
congestion avoidance algorithm can lead to poor 
performance, particularly in default configurations and 
on paths with high round trip times. Solutions to this 
problem include careful (ideally automated) tuning of 
TCP parameters [20], TCP protocol improvements [21, 
35, 39], multiple “parallel” TCP connections [30, 48], 
and the substitution of alternative protocols [15, 16, 29, 
35]. We want to support such alternatives. 

End-to-end performance. Depending on context, 
high end-to-end performance can require the integrated 
management of many different devices, including 
storage systems, computers used to transform data, 
network interfaces, and network paths, and also 
perhaps other devices such as computers and storage 
systems located at intermediate points in a network. 
We would like to provide a framework within which a 
range of such end-to-end management approaches can 
be applied in a convenient manner. 

Diverse failure modes. Collective operations, striped 
transfers, and end-to-end management offer 
opportunities for enhanced performance, but also 
introduce new failure modes. Our design must address 
robustness and fault tolerance. 

4 GridFTP Protocol 
We adopt the GridFTP data transfer protocol, rather 

than alternatives such as WebDAV [58], for five 
reasons. First, the FTP protocol [47] on which 
GridFTP is based separates control and data channels, 

enabling third-party transfers, that is, the transfer of 
data between two end hosts, mediated by a third host. 
Second, FTP is a widely implemented and well-
understood IETF-standard protocol with a large base of 
code and expertise from which to build. Third, FTP 
provides a well-defined architecture for protocol 
extensions and supports dynamic discovery of the 
extensions supported by a particular implementation. 
Fourth, many extensions have been defined through the 
IETF, some of which are useful in the current context. 
Fifth, GridFTP adds new features that are relevant to 
our concerns.  

The following is a summary of key GridFTP 
features. 

Third-party control of data transfer. To manage 
large datasets for distributed communities, we must 
provide authenticated third-party control of data 
transfers between storage servers. A third-party 
operation allows a user or application at one site to 
initiate, monitor and control a data transfer operation 
between two other sites: the source and destination for 
the data transfer.  

Authentication, data integrity, data confidentiality. 
GridFTP supports Generic Security Services (GSS)-
API authentication of the control channel (RFC 2228) 
and data channel (GridFTP extensions), and supports 
user-controlled levels of data integrity and/or 
confidentiality. Data channel authentication is of 
particular importance in third party transfers since the 
IP address of the host connecting for the data channel 
will be different than that of the host connected on the 
control channel, and there must be some way to verify 
that it is the intended party.  

Striped data transfer. Data may be striped or 
interleaved across multiple servers, as in a parallel file 
system or DPSS disk cache [36]. Thus, GridFTP 
defines protocol extensions that support the transfer of 
data partitioned among multiple servers. 

Parallel data transfer. On wide-area links, using 
multiple TCP streams in parallel between a single 
source and destination can improve aggregate 
bandwidth relative to that achieved by a single stream 
[30, 48]. GridFTP supports such parallelism via FTP 
command extensions and data channel extensions. A 
GridFTP implementation can use long virtual round 
trip times to achieve fairness when using parallelism or 
striping [31]. Note that striping and parallelism may be 
used in tandem, i.e., you may have multiple TCP 
streams open between each of the multiple servers 
participating in a striped transfer. 

Partial file transfer. Some applications can benefit 
from transferring portions of files rather than complete  
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files: for example, analyses that require access to 
subsets of massive object-oriented database files. FTP 
allows transfer of the remainder of a file starting at a 
specified offset. GridFTP supports requests for 
arbitrary file regions. 

Automatic negotiation of TCP buffer/window sizes. 
Using optimal settings for TCP buffer/window sizes 
can dramatically improve data transfer performance. 
However, manually setting TCP buffer/window sizes is 
an error-prone process (particularly for non-experts) 
and is often simply not done. GridFTP extends the 
FTP command set and data channel protocol to 
support both manual setting and automatic negotiation 
of TCP buffer sizes for large files and for large sets of 
small files. Our system currently supports only manual 
setting of the TCP buffer size. 

Support for reliable and restartable data transfer. 
Reliable transfer is important for many applications 
that manage data. Fault recovery methods are needed 
to handle failures such as transient network and server 
outages. The FTP standard includes basic features for 
restarting failed transfers that are not widely 
implemented. GridFTP exploits these features and 
extends them to cover its new data channel protocol. 

5 Globus Striped GridFTP Design 

The Globus striped GridFTP system aims for (a) 
modularity, to facilitate the substitution of alternative 
mechanisms and use in different environments and 
configurations, and (b) efficiency, in particular the 
avoidance of data copies. As in systems such as the x-
Kernel [34], we achieve these goals via an architecture 
that allows a protocol processing pipeline to be 
constructed by composing independent modules 
responsible for different functions. 

Data Channel

Server PI

DTP

Description of transfer: completely 
server-internal communication. 
Protocol is unspecified and left up 
to the implementation.

Server PI

DTP

Internal IPC API Internal IPC API

Client PIInfo on transfer: restart 
markers, performance 
markers, etc. Server PI 
optionally processes 
these, then sends 
them to the client PI

Control
Channels

 
Figure 1: Globus GridFTP architecture 

    The implementation (Figure 1) comprises three 
logically distinct components: client and server 
protocol interpreters (PIs), which handle the control 
channel protocol (these two functions are distinct 
because the protocol exchange is asymmetric), and the 
data transfer process (DTP), which handles the 
accessing of the actual data and its movement via the 
data channel protocol. These components can be 
combined in various ways to create servers with 
different capabilities. For example, combining the 
server PI and DTP components in one process creates a 
conventional FTP server, while a striped server might 
use one server PI on the head node of a cluster and a 
DTP on all other nodes. 

The DTP itself is further decomposed into a three-
module pipeline (Figure 2). The data access module 
provides an interface to data source(s) and/or sink(s). 
The data processing module performs server-side data 
processing, if requested by an extended store/retrieve 
(ESTO/ERET) command. Finally, the data channel 
protocol module reads from, and/or writes to, the data 
channel. This basic structure allows for a wide variety 
of systems, from simple file server logic (data access 
module reads/writes files, data processing module does 
nothing, data channel protocol module writers/reads 
the data channel) to more complex and specialized 
behaviors (e.g., data module generates data 
dynamically in response to user requests). 

Data 
Access 
Module

Data 
Processing 

Module

Data 
Channel 
Protocol 
Module

Data
source
or sink

Data 
channel

 
Figure 2: Globus GridFTP data transfer pipeline 

5.1  The Protocol Interpreter 

The server PI handles the control channel exchange. 
In order for a client to contact a GridFTP server, either 
the server PI must be running as a daemon and 
listening on a well known port (2811 for GridFTP), or 
some other service (such as inetd) must be listening on 
the port and be configured to invoke the server PI. The 
client PI then carries out its protocol exchange with the 
server PI. 

During the preparatory phase of the protocol 
exchange, the server PI is concerned simply with 
developing a description of the transfer that is to take 
place. No communication is necessary with the DTP at 
this point; indeed, the DTP need not even be running. 
When a command is received that requires DTP 
activity, the server PI passes it the description of the 
transfer (first starting it, if needed), after which the 
DTP can carry out the transfer on its own.  Once the  
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transfer request is passed, the server PI simply acts as a 
relay for transfer status information. For example, the 
server DTP may send performance markers, restart 
markers, etc., to the server PI, which optionally 
processes them, and then sends them to the client PI. 

PI-to-DTP communications are internal to the 
server, and thus this protocol used can evolve with no 
impact on the client. We used Message Passing 
Interface (MPI) [28] in an early prototype, which 
worked well but requires that MPI be installed. We 
currently use a binary protocol over TCP. 

The data channel communication structure is 
governed by data layout. In general, if the number of 
nodes at both ends is equal, each node communicates 
with just one other node. Otherwise, each sender 
makes a connection to each receiver, and sends data to 
each receiver based on data offsets. 

5.2  DTP Data Access Module 

This module is responsible for reading from, and/or 
writing to, a data source or sink. Its public interface 
includes transfer operations (list, send, receive) and 
command operations (e.g., make/remove directory, 
rename, checksum). Different implementations of this 
interface can be provided. We provide one for POSIX-
accessible file systems and are working on one for the 
High Performance Storage System (HPSS). 

5.3  DTP Data Processing Module 

This module allows for (optional) server-side data 
processing, such as compression, scaling, or on-the-fly 
concatenation of multiple files. Normal (no server side 
processing) transfers are initiated with the STOR 
<filename>, for a put, or RETR <filename>, for a get. 
Data processing modules are invoked for puts and gets 
via the ESTO and ERET commands, respectively, 
which both take as arguments three strings: a module 
name, opaque module parameter, and filename. The 
module name is used to locate a loaded module in the 
module registry. The module is passed the parameter 
string and filename, and performs any necessary 
processing on the data as it transits the server. 

We currently implement data processing module 
functionality within the data access module. We plan to 
separate this functionality out as a separate module and 
to allow for chaining of multiple modules. 

5.4 DTP Data Channel Protocol Module 

This module handles data channel processing, i.e., 
the operations required to fetch data from, or send data 
to, the data channel. A single server may support 
multiple data channel protocols, in which case the 

MODE command is used to select the protocol to be 
used for a particular transfer. 

We use Globus eXtensible Input/Output (XIO) 
system [10] as the data channel protocol module 
interface and currently support two bindings: Stream-
mode TCP and Extended Block Mode TCP. 

5.5 Security Considerations 

The Globus GridFTP design provides for secure 
authentication of control channel requests (obligatory) 
and for data channel integrity and confidentiality 
(optional). GSS-API Grid Security Infrastructure (GSI) 
[26] and Kerberos [43] authentication bindings are 
supported. Standard Kerberos does not support data 
channel authentication, but there exist “user to user” 
extensions to Kerberos that do. 

Security operations are performed via the GSS-API, 
for which Grid Security Infrastructure (GSI) [26] and 
Kerberos [43] authentication bindings are supported. 
We discuss GSI here. 

A session is established when the client initiates a 
TCP connection to the port on which the server is 
listening. The first thing that must happen is an 
authentication per RFC 2228. By default, the client 
presents a delegated proxy certificate [57], and the 
server must present a “host certificate” issued by a CA 
trusted by the client and with a DN ending with a 
common name  that is a direct match of that returned 
by a reverse DNS lookup of the server’s IP address. It 
is possible to specify a subject name other than the 
default, and this is in fact necessary if you run the 
server as a user, in which case the server presents that 
user’s subject name to the client. If authentication is 
not successful, the connection is dropped.  

If authentication is successful, an authorization 
callout is invoked to (a) verify authorization and (b) 
determine the local user id as which the request should 
be executed. This callout is linked dynamically; 
Globus GridFTP provides an implementation that 
supports both a Globus “gridmapfile” and Community 
Authorization Service [44] credentials, which may 
encode in SAML assertions the specific files that a user 
is authorized to read and/or write. Sites can also 
provide alternative implementations. Server does a 
setuid to the local user id as determined by the 
authorization callout. 

If authorization succeeds, the control channel has 
been established and the rest of the control channel 
protocol exchange can proceed. The control channel is 
encrypted and integrity protected by default. 

To establish the data channel (the connection over 
which the actual data of interest will flow), a listening 
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port must be established and the other end informed of 
this port. The GridFTP protocol requires that the 
receiver be the listener and that the sender issue the 
TCP connect. Thus, the client sends a PASV command 
to the server that is to receive the data. The receiver 
begins listening on a TCP port and responds to the 
command indicating the IP address and Port of the 
listener. (If this is a striped transfer, the client sends a 
striped PASV, or SPAS, command and an array of 
IP/ports is returned.) The client then sends to the other 
server a PORT (or SPOR, for striped port) command, 
which takes the IP/ports as a parameter. This command 
directs the server to initiate the TCP connect, and 
establish the data channel. 

Third party transfer presents a security issue, as the 
receiving server starts listening on a port, but it has no 
way of knowing the IP address of the server that will 
connect to it. To mitigate this issue, we default to 
requiring GSI authentication on the data channel as 
well. In this case, the server performs a delegation and 
both ends of the authentication must present the user’s 
subject name (no host certificate is involved). All the 
parties involved in the transfer must accept the same 
CA. 

Cryptographic confidentiality and integrity 
protection are both supported on the data channel, but 
are not enabled by default due to its cost (an order of 
magnitude is not unusual on high speed links). 

When the PI and DTP are run in separate processes, 
they communicate over an Interprocess 
Communication link. Establishment of this link is 
exactly as per the control channel, with the PI acting as 
the client (using the delegated credential) and the DTP 
presenting its host certificate. 

We have considered running the PI as a non-
privileged user by default. This would prevent an 
external connection from ever being connected to a 
root process. In that case, the host certificate should be 
owned by the user. The only objection to this approach 
is that some other services might require that the host 
certificate be owned by root. We are exploring other 
options that would allow the PI to be run as non-
privileged user. 

File system security is handled via normal operating 
system mechanisms. Once the process is running as an 
unprivileged user, it is subject to access control and 
quotas imposed by the operating system. 

6 Experimental Studies 
We perform experiments in three settings: a local 

area network (LAN) with a 0.2 milliseconds (msec) 

round trip time (RTT) and a bottleneck link of 612 
Mbit/s, a metropolitan area network (MAN) with 2.2 
msec RTT and a bottleneck link of 1 Gbit/s, and a wide 
area network (WAN) with a 60 msec RTT and a 
bottleneck link of 30 Gbit/s. The MAN is the 1 Gbit/s 
Distributed Optical Testbed (DOT) [2]. The WAN is 
the TeraGrid [14] link between NCSA in Illinois and 
SDSC in California, on which each individual host has 
a 1 Gbit/s bottleneck link. Hosts are either 1133 MHz 
or more dual Pentium processors with at least 512 
Mbyte memory and 1 Gbyte swap space, or (on 
TeraGrid) dual 1.3 Ghz Intel Itanium processors. 

In all tests, we set the TCP buffer size to 
(bandwidth-delay-product/number-of-streams). 

6.1 Comparison with Other FTP Servers 

 

 
Figure 3: Single-stream throughput on LAN 

 

 
Figure 4: Single-stream throughput on WAN 

 
   We first compare our server with two popular FTP 
servers, WU-FTPD [6] and NCFTP [4], under identical 
conditions: no striping, parallelism, or authentication, 
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and in stream mode. We used a block size of 64 Kbytes 
for disk IO. We present in Figures 3 and 4 performance 
when transferring a file of size 1, 10, 100, and 1000 
Mbytes, in our LAN and WAN. All data points are the 
means of 10 runs, with error bars also shown. We see 
that our server achieves superior performance in all 
cases, and does somewhat better relative to the other 
systems for larger files. It could be because of the 
efficient asynchronous event handling mechanism used 
in our implementation. 

6.2 Harnessing Parallelism 

 

 
Figure 5: Parallel throughput on LAN 

 

 
Figure 6: Parallel throughput on MAN 

 
   We next look at the impact of multiple streams on 
total achieved performance. Figures 5-7 show 
performance achieved in LAN, MAN, and WAN 
settings as a function of the number of streams. We 
show data for four different cases: Iperf, memory-to-
memory Globus (/dev/zero to /dev/null), and disk-to-
disk Globus, each running on a single node, as a 
function of the number of streams used; and the 

Bonnie file system benchmark [1] that first writes and 
then reads a 1 Gbyte file on one of the two computers 
used in our experiment. For the Iperf and Globus 
memory-to-memory, we ran the application for 60 
seconds. For the Globus disk-to-disk test, we transfer a 
1 Gbyte file. For Bonnie, we measured read 
performance at the sender and write performance at the 
receiver, and report the lower of the two values. 
   In the LAN case, Globus memory-to-memory 
performance matches that of Iperf, reaching 92% of 
bottleneck bandwidth; Globus disk-to-disk 
performance tracks that of Bonnie. Up to five streams 
seem to make a difference in all cases, after which little 
additional benefit is gained. In the WAN disk-to-disk 
case, we see somewhat more degradation of 
performance with increased streams. We attribute this 
result to more ‘seek’ operations at the receiver when 
using more streams, due to blocks received out of order 
(Figure 8). 
 

Figure 7: Parallel throughput on WAN  

 

 
Figure 8: Seek operations at receiver vs. number of 

streams when transferring a 3 Gbyte file 
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6.3 Striping 

 

 
Figure 9: Globus mem-to-mem WAN performance 

We tested striped data transfers in both memory-to-
memory and disk-to-disk modes. For disk-to-disk 
transfers, we used files of size 3*num_nodes Gbytes, 
except when using 64 nodes on each end, when we 
used (3/2)*num_nodes=96 Gbytes. Figure 9 shows 
memory-to-memory striped transfer performance. Note 
that with 32 nodes on each side, we achieved 26 Gbit/s 
over the 30 Gbit/s connection. 

 
 

 
Figure 10: Globus disk-to-disk WAN performance 

We have noted in numerous experiments that at 
lower speeds, increased streams did not equate to 
increased performance, only as we approached the 
bottleneck link speed, did the number of streams begin 
to have an effect. Though we were unable to obtain 
packet loss data, we suspect that this is because we 
have few or no packet losses until we begin to 
“compete with ourselves” and overflow the router 
buffers. In general, parallel streams are more effective 
with higher RTTs and with higher packet loss, though 

if packet loss were to become extreme to the point that 
all streams were losing packets, we might lose the 
benefits of multiple streams. Our results seem to 
validate the conclusions made in [31] on the 
effectiveness of parallel TCP streams. We did not do 
any analysis on fairness and the effect of parallel TCP 
on other network streams. 
 

Figure 11: Parallel disk performance 

 

Figure 10 shows disk-to-disk striped transfer 
performance. We observe a significant reduction in 
performance compared to memory-to-memory 
transfers. To determine why, we ran Bonnie on 
multiple machines to measure the effect of multiple 
simultaneous operations on file system performance. 
Both NCSA and SDSC run GPFS [3]. NCSA has two 
GPFS scratch file systems, GPFS NSD and high 
performance GPFS SAN; in all experiments presented 
here, we used fast I/O machines connected to the SAN. 
Figure 11 shows the impact of multiple simultaneous 
operations on disk throughput. Our earlier experiments 
transferred data from SDSC to NCSA, and thus it is 
SDSC read performance and NCSA write performance 
that are relevant. It seems that SDSC read performance 
is currently the major obstacle to higher performance 
disk-to-disk transfers. 

6.4 Scalability 

Our final experiments evaluate Globus GridFTP 
performance as a function of the number of clients. We 
use the DiPerf test framework [19] to deploy clients on 
multiple servers and to collect performance data. The 
server, located in Los Angeles, was a 2-processor 1125 
MHz x86 machine running Linux 2.6.8.1 with Web100 
patches, 1.5 GB memory and 2 GB swap space, 1 
Gbit/s Ethernet network connection and 1500 B 
network MTU. The clients were created on hosts 
distributed over PlanetLab [11] and at the University of 
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Chicago (UofC). PlanetLab machines are generally 
connected by 10 Mbit/s Ethernet, and the UofC 
machines by 100 Mbit/s Ethernet 
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Figure 12: Scalability results with 1800 clients 

Figure 12 shows results obtained with 1800 clients 
mapped in a round robin fashion on 100 PlanetLab 
hosts and 30 UofC hosts. A new client is created once 
a second. Each client runs for 2400 seconds and during 
this time repeatedly requests the transfer of a 10 Mbyte 
file from the server’s disk to the client’s /dev/null. A 
total of 150.7 Gbytes are transferred in 15,428 
transfers. The left axis in Figure 12 indicates load 
(number of concurrent clients), response time (secs), 
and memory allocated (Mbytes), while the right axis 
denotes both throughput (Mbyte/s) and server CPU 
y%. The dots in the figure represent individual client 
response times, while each of the lines represents a 60-
second running average. Many other interesting 
characteristics are apparent in this figure, but are 
beyond the scope of this paper.  

These results are encouraging. The server sustained 
1800 concurrent requests with just 70% CPU and 0.94 
Mbyte memory per request. Furthermore, CPU usage, 
throughput, and response time remain reasonable even 
when allocated memory exceeds physical memory, 
meaning that paging is occurring. Total throughput 
reaches 25 Mbyte/s with less than 100 clients and 
exceeds 40 Mbyte/s with around 600 clients. 

7 Discussion 
We have described a new open source 

implementation of the GridFTP protocol. In designing 
this system, we set out to create a robust, performant, 
and modular data transfer framework for use in a 
variety of data-intensive tools and applications. The 
resulting Globus GridFTP system integrates a variety 
of techniques, including a modular protocol processing 

pipeline and parallel I/O, to meet its design goals in a 
way that no other system has done before. 

We have tested our system thoroughly, as have early 
adopters. Performance is excellent in all situations 
studied, comparing favorably with that of other FTP 
servers for single-stream transfers and doing far better 
when striping is used. Performance with other network 
protocols, data transforms, and storage systems 
remains to be studied. 

Our system’s modular structure has allowed its use 
in many different contexts. We give four examples. 
The “TeraGrid Copy” (tgcp) program automatically 
selects appropriate parallelism and window size 
parameters to maximize performance on the TeraGrid 
network. The GT4 GRAM execution management 
service [18] uses our mechanisms for data staging and 
streaming. The NeST storage appliance [13] and the 
Earth System Grid’s OPeNDAP-G system [22] use our 
libraries for data transport.  

We have many ideas for further research and 
development. As indicated earlier, successful 
completion of an end-to-end transfer may involve 
intermediate staging of data products [41], negotiation 
with firewalls, use of alternative network protocols, 
and/or reservation of network or storage resources. 
Some such functions may appropriately be placed 
within, or require support from, our libraries. We also 
hope to exploit emerging Web services specifications 
to define more powerful and standards-based control 
interfaces, and to implement proposed GridFTP 
protocol improvements [42]. 
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