

DI-GRUBER: A Distributed Approach to Grid Resource Brokering
Catalin Dumitrescu*, Ioan Raicu*, Ian Foster*+

Abstract

Managing usage service level agreements (USLAs)
within environments that integrate participants and
resources spanning multiple physical institutions is a
challenging problem. Maintaining a single unified
USLA management decision point over hundreds to
thousands of jobs and sites can become a bottleneck in
terms of reliability as well as performance. DI-
GRUBER, an extension to our GRUBER brokering
framework, was developed as a distributed grid USLA-
based resource broker that allows multiple decision
points to coexist and cooperate in real-time. DI-
GRUBER addresses issues regarding how USLAs can
be stored, retrieved, and disseminated efficiently in a
large distributed environment. The key question this
paper addresses is the scalability and performance of
DI-GRUBER in large Grid environments. We conclude
that as little as three to five decision points can be
sufficient in an environment with 300 sites and 60 VOs,
an environment ten times larger than today’s Open
Science Grid.

1. Introduction

The motivating scenarios for our work are large
grid environments in which providers wish to grant
consumers the right to use certain resources for some
agreed-upon time period. Providers might be
companies providing outsourcing services, or scientific
laboratories that provide different collaborations with
access to their computers or other resources. *

Providers and consumers may be nested: a provider
may function as a middleman, providing access to
resources to which the provider has itself been granted
access by some other provider. USLA issues can arise

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage, and that copies bear this notice and
the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SC|05 November 12-18, 2005, Seattle, Washington, USA
© 2005 ACM 1-59593-061-2/05/0011…$5.00

at multiple levels in such scenarios. Providers want to
express (and enforce) the USLAs under which
resources are made available to consumers. Consumers
want to access and interpret USLA statements
published by providers, in order to monitor their
agreements and guide their activities. Both providers
and consumers want to verify that USLAs are applied
correctly.

We present here a technique for constructing a
scalable management service with support for USLA
expression, publication, discovery, interpretation,
enforcement, and verification [1]. This problem
encompasses challenging and interrelated scheduling,
information synchronization, and scalability issues. We
build on previous work concerning the specification
and enforcement of local resource scheduling policies
[2,3,4,5,6], the GRUBER broker [1,25], and the
scalability and performance measurements of various
grid services [13]. GRUBER addresses issues
regarding how USLAs can be stored, retrieved, and
disseminated efficiently in a distributed environment.
GRUBER has been implemented in both the Web
Services (WS) and pre-WS versions of the Globus
Toolkit (GT).

Here we introduce a two layer scheduling
infrastructure, DI-GRUBER, capable of working over
large grids. DI-GRUBER extends GRUBER by
introducing support for multiple scheduling decision
points, loosely synchronized via periodic information
exchange. Our focus is on measuring both the
capability and performance of such a framework, as
well as gaining insights about the number of decision
points required under a certain load.

The rest of this article is organized as follows. We
first provide a more detailed description of the problem
that we address. We then discuss the background
information about the tools used to perform these
experiments, as well as the model used for USLA
enforcement. Section 3 contains the description of the
experiments, the results we achieved, and some
improvements we consider necessary for our
framework for dynamically re-configuring. Section 4
contains additional simulation results and
enhancements proposed for future work. The rest of the
paper focuses on related work and on our conclusions.

*Computer Science Department
The University of Chicago

{cldumitr,iraicu}@cs.uchicago.edu

+Mathematics and Computer Science Division
Argonne National Laboratory

foster@mcs.anl.gov

1.1. Problem Statement

This work targets grids that may comprise hundreds
of institutions and thousands of individual investigators
that collectively control tens or hundreds of thousands
of computers and associated storage systems [11,12].
Each individual investigator and institution may
participate in, and contribute resources to, multiple
collaborative projects that can vary widely in scale,
lifetime, and formality. At one end of the spectrum,
two collaborating scientists may want to pool resources
for the purposes of a single analysis. At the other
extreme, the major physics collaborations associated
with the Large Hadron Collider encompass thousands
of physicists at hundreds of institutions, and need to
manage workloads comprising dynamic mixes of work
of varying priority, requiring the efficient aggregation
of large quantities of computing resources.

In this paper we focus on techniques for
constructing a scalable service and measure its
performance. It is important to understand the
problems we face in order to come up with appropriate
solutions. First, we investigate performance issues and
service reliability. Then, we examine techniques for
determining dynamically the number of decision points
required for the large grid scenarios considered in this
paper.

1.2. Performance Issues

How fast can a site selector service process
requests? We address this question in detail later in the
paper, but to provide some initial data we have
performed several experiments using DiPerF, a
distributed performance-testing framework designed to
simplify and automate service performance evaluation
(see Section 2.8).

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

of

 C
on

cu
re

nt
 M

ac
hi

ne
s

(x
10

)
/ R

es
po

ns
e

Ti
m

e
(s

ec
)

0

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

Th
ro

ug
hp

ut
 (J

ob
s

/ S
ec

)

Throughput

Response Time

Load

Figure 1: GT3.2 Service Instance Creation:

Response time, Throughput, and Server Load

We use DiPerF to perform tests on service instance
creation in a GT3 Java Web Service similar to the first
GRUBER implementation as described in Section 2.2.

We found a peak throughput of about 14 requests per
second. (The factors limiting performance are
primarily authentication and SOAP processing. While
GT4 and the latest Apache Axis on which it builds
provides significant improvements in both areas [29],
limits will always remain.) Furthermore, service
response time increases with load, from an average of
about 4s under ‘normal’ load to about 10s under
‘heavy’ load.

Workloads on large grids such as the Open Science
Grid (OSG: previously known as Grid3 [18]) require
both higher job submission rates and reduced roundtrip
times. Thus, we need to investigate other ways of
building and organizing scheduling infrastructures for
large grids with many submitting hosts, and to
understand the implications of those alternative
structures on performance and scheduling decision
accuracy.

1.3. Service Reliability Issues

Another problem often encountered in large
distributed environments concerns service reliability
and availability. USLA service providers are subject to
high load, due both the high request rates mentioned
above and the need to support interactions relating to
USLA modification. We cannot afford for this
infrastructure to fail. The administrative costs of
maintaining a USLA and scheduling infrastructure
should not increase with the number of resource
providers and VOs participating in resource sharing
actions [10].

1.4. USLA Privacy Issues

Another problem faced in practice is the necessity
for privacy when sensitive computing resources are
shared. USLA specification, enforcement, negotiation,
and verification mechanisms arise at multiple levels
within VO-based environments. Resource providers
want to establish, modify, enforce, and instrument
USLAs concerning how their resources are made
available to different participants and/or for different
purposes.

In certain cases, users can require various privacy
issues for the availability of information about their
work (job types and priorities, data movement and
characteristics). Thus, the maintenance of a private
broker could be a necessity in such a situation. This
issue can be encountered from the VO level on down
to individual users. The problem becomes even more
sensible when dealing with commercial entities [15].
Privacy for USLAs is outside the scope of this paper,
but is an important topic.

2. Background Information

We now introduce the main concepts and tools used
in this paper.

2.1. USLA Enforcement Model

The environment model that we use in our work is
depicted in Figure 2 [16,17]. Note in particular the
decision points (also know as policy enforcement
points or PEPs), which are responsible for executing
USLAs. These components gather monitoring metrics
and other information relevant to their operations, and
then use this information to steer resource allocations
as specified by the USLAs [1].

Figure 2: VO-Level Architecture

We distinguish between two types of PEPs. Site
policy enforcement points (S-PEPs) reside at all sites
and enforce site-specific policies. In our experiments,
we did not take S-PEPs into consideration as they were
outside our scope, and assumed the decision points
have total control over scheduling decisions.

VO policy enforcement points (“decision points”),
associated with VOs, operate in a similar way to S-
PEPs. They make decisions on a per-job basis to
enforce USLAs regarding VO specifications for
resource allocations to VO groups or to types of work
executed by the VO. Decision points are invoked when
VO planners make job planning and scheduling
decisions to select which jobs to run, when to send
them to a site scheduler, and which sites to run them at.
Decision points interact with S-PEPs and schedulers to
enforce VO-level USLA specifications.

2.2. DI-GRUBER Broker Decision Point

We have already developed GRUBER [25], a
prototype Grid V-PEP and S-PEP infrastructure that
implements the USLA management model introduced
before. GRUBER is the main component that we used
for the job scheduling over a hypothetic grid similar to
Grid3 [18]. It is able to perform job scheduling based

on notions such as VO, group VO, and USLAs at
various levels. The main four principal components are
described next.

The GRUBER engine is the main component of the
architecture. It implements various algorithms for
detecting available resources and maintains a generic
view of resource utilization in the grid.

The GRUBER site monitor is a data provider for the
GRUBER engine. This component is optional and can
be replaced with various other grid monitoring
components that provide similar information, such as
MonaLisa or Grid Catalog.

A GRUBER client represents a standard GT client
that allows communication with other GRUBER
components and the GRUBER engine, such as the
GRUBER site selectors that we introduce next.

GRUBER site selectors are tools that communicate
with the GRUBER engine and provide answers to the
question: “which is the best site at which I can run this
job?”. Site selectors can implement various task
assignment policies, such as round robin, least used, or
least recently used task assignment policies.

Finally, the GRUBER queue manager is a
GRUBER client that resides on a submitting host. This
component monitors VO policies and decides how
many jobs to start and when. It interacts with the
GRUBER engine to obtain site selection
recommendations.

Figure 3: GRUBER Architecture

In the work reported here, we use the GRUBER
engine and site selectors but not the queue manager. In
this configuration, GRUBER is used only as a site
recommender: it does not enforce VO-level USLAs, by
for example removing a site for an already over-quota
VO user at that site. In effect, we assume that all
clients comply with the recommendations and that
there is thus no need for enforcement.

GRUBER does not itself perform job submission,
but as shown in Figure 3 can be used in conjunction
with various grid job submission infrastructures. In the
work we describe here, we interface with the Euryale
tool.

2.3. GRUBER USLA Semantics

We review how USLAs are described. Much
research from the web-service provisioning community
deals with these issues in detail [5,6,8,9,10,15,23].

In the experiments described in this paper we use a
USLA representation based on Maui semantics and
WS-Agreement syntax [8,9,15]. Allocations are made
for processor time, permanent storage, or network
bandwidth resources, and there are at least two levels
of resource assignments: to a VO, by a resource owner,
and to a VO user or group, by a VO. We started from
Maui semantics in providing support for fair-share rule
specification [5]. Each entity has a fair share type and
fair share percentage value, e.g., VO0 15.5, VO1 10.0+,
VO2 5.0-. The sign after the percentage indicates if the
value is a target (no sign), upper limit (+), or lower
limit (-).

We extended the semantics by associating both a
consumer and a provider with each entry; extending
the specification in a recursive way to VOs, groups;
and users, and allowing more complex sharing rules as
defined in the WS-Agreement. Further, we express
allocations as WS-Agreement goals allowing the
specification of rules with a finer granularity. We
based our SLA specification on a subset of WS-
Agreement, taking advantage of the refined
specification and the high-level structure. We use a
simple schema that allows for monitoring resources
and goal specifications [5,8,9].

2.4. Euryale as Concrete Planner

Euryale [28] is a system designed to run jobs over
large grids such as OSG [18]. Euryale uses Condor-G
[2] (and thus the Globus Toolkit GRAM) to submit and
monitor jobs at sites. It takes a late binding approach in
assigning jobs to sites, meaning that site placement
decisions are made immediately prior to running the
job, rather than in an earlier planning phase. Euryale
also implements a simple fault tolerance mechanism by
means of job re-planning when a failure is discovered.
We use the Euryale planner as our job submission tool
and GRUBER interface.

A tool called DagMan executes the Euryale
prescript and postscript. The prescript calls out to the
external site selector (i.e., in our case, GRUBER) to
identify the site on which the job should run, rewrites
the job submit file to specify that site, transfers
necessary input files to that site, registers transferred
files with the replica mechanism, and deals with re-
planning. The postscript file transfers output files to
the collection area, registers produced files, checks on
successful job execution, and updates file popularity.

2.5. Information Dissemination Strategies

An important issue for a decentralized brokering
service is how USLAs and usage information are
disseminated among decision points. We need to
aggregate correctly partial information gathered at
several points; without a correct aggregation of the
partial information, wrong decisions can result in
workload starvation and resource under-utilization.

This problem can be addressed in several ways. In a
first approach, both resource usage information and
USLAs are exchanged among decision points. In a
second approach, only utilization information is
exchanged. As possible variations on these two
approaches, whenever new sites are detected, their
status is incorporated locally, which means that each
decision point has only a partial view of the
environment. In a third approach, no usage information
is exchanged and each decision point relies only on its
own mechanisms for detecting grid status.

For the experiments in this paper, we focus on the
second approach and the assumption that each decision
point has complete “static” knowledge about available
resources, but not the latest resource utilizations. An
advantage of this approach is the simplified
implementation by avoiding USLA tracking.

2.6. Open Science Grid

Open Science Grid (OSG: previously known as
Grid3 [18]) is a multi-virtual organization environment
that sustains production level services required by
various physics experiments. The infrastructure
comprises more than 50 sites and 4500 CPUs, over
1300 simultaneous jobs and more than 2 TB/day
aggregate data traffic. The participating sites are the
main resource providers under various conditions. We
consider in this paper an environment similar to OSG
but ten times larger and with much higher rates of job
scheduling [18]. GRUBER (and the DI-GRUBER
enhancement) provides a USLA-based solution for job
scheduling decisions for environments similar to OSG,
by providing a means for informed site selection at the
job level and beyond.

2.7. PlanetLab Testbed

PlanetLab [26,27] is a geographically distributed
platform for deploying, evaluating, and accessing
planetary-scale network services. PlanetLab is a shared
community effort by a large international group of
researchers, each of whom gets access to one or more
isolated “slices” of PlanetLab’s global resources via a
concept called distributed virtualization. PlanetLab

now comprised over 500 nodes (Linux-based PCs or
servers connected to the PlanetLab overlay network)
distributed worldwide. Almost all nodes are connected
via 10 Mb/s network links (with 100Mb/s on several
nodes), have processor speeds exceeding 1.0 GHz
IA32 PIII class processor, and at least 512 MB RAM.

2.8. DiPerF

For all the experiments in this paper, we used the
DiPerF tool, a distributed performance testing
framework. DiPerF coordinates several machines in
executing a performance service client and collects
various metrics about the performance of the tested
service. The framework is composed of a
controller/collector, several submitter modules and a
tester component [13]. DiPerF was originally designed
for testing a single point service. For the experiments
reported here, we extended it to enable testing of
distributed services such as DI-GRUBER. Simply,
each tester instantiates a client connected to a single
DI-GRUBER decision point. When scheduling a job,
each such client interacts with its DI-GRUBER
decision point to obtain site load information, and then
executes site selector logic to determine the site to
which the job should be dispatched. DiPerF allowed us
to concentrate on the performance and scalability of
DI-GRUBER rather than on how to perform large scale
testing involving 100+ clients.

3. Empirical Results

In this section, we focus on measuring several
characteristics of the DI-GRUBER implementation in a
large environment. We present results for both GT3
and GT4 implementations of DI-GRUBER. Due to the
fact that we do not have access to a large enough grid,
we emulated the entire environment on PlanetLab
[26,27].

3.1. Architecture Analysis

This section describes the performance analysis
study we conducted to evaluate various DI-GRUBER
configurations. In particular, we wanted to determine
whether CPU resources could be allocated in a fair
manner across multiple VOs, and across multiple
groups within a VO, when using DI-GRUBER
configurations that feature multiple loosely coupled
GRUBER instances rather than a single centralized
instance. The factors that we consider include both the
number of GRUBER instances and the frequency of
communication of state information among those
decision points. Figure 4 depicts in a schematic way

the layout of the scenarios we used for our
performance measurements.

Figure 4: Multiple Decision Points

In either the single or multiple decision point
scenario, each decision point maintains a full view of
the resource usages and utilizations by monitoring
scheduling decisions.

3.2. Performance Metrics

We use five metrics to evaluate the effectiveness of
DI-GRUBER: Average Response Time (Response),
Average Throughput (Throughput), Queue Time
(QTime), Average Resource Utilization (Util), and
Average Scheduling Accuracy (Accuracy). Each
metric is important, as a good infrastructure will both
maximize delivered resources and meet owner intents.

We define Response as follows, with RTi being the
individual job time response and N being the number
of jobs processed during the execution period:

Response = Σi=1..N RTi / N

Throughput is defined as the number of requests
completed successfully by the service per unit time.

We define QTime for an entire VO as follows, with
QTi being the individual job queue time, i.e., the time
that elapses between the job being dispatched to a site
and the job starting execution:

QTime = Σi=1..N QTi / N

Response and QTime focus on different elements.
While Response measures the service responsiveness,
QTime measures how fast a job is placed in execution
after scheduling, and thus provides a more direct
measure of the scheduling service’s ability to good
scheduling decisions.

We define Util as the ratio of the CPU time actually
consumed by the N jobs executed during the period
considered (Σ ETi) to the total CPU time available over
that time:

Util = Σi=1..N (ETi) / (#cpus * ∆t)

Finally, we define the scheduling accuracy for a
specific job (SAi) as the ratio of free resources at the

selected site to the total free resources over the entire
grid. Accuracy is then the aggregated value of all
scheduling accuracies measured for each individual
job:

Accuracy = Σi=1..N (SAi) / N

3.3. Experimental Environment

We used between one and ten GT3 DI-GRUBER
decision points deployed on PlanetLab nodes [26,27].
Each decision point maintained a view of the
configuration of the global DI-GRUBER environment,
via the periodic exchange (in the experiments that
follow, every three minutes) with other decision points
of information about recent job dispatch operations.
The decision points are connected in a mesh, a simple
configuration that is adopted to simplify analysis and
understanding.

We used composite workloads that overlay work for
60 VOs and 10 groups per VO. The experiment
duration was one hour in all cases, and jobs were
submitted every second from a submission host. Each
of a total of about 120 submission hosts (“clients”)
maintained a connection with only one DI-GRUBER
decision point, selected randomly in the beginning—
thus simulating a scenario in which each submission
site is associated statically with a single decision point.

An important characteristic of our experimental
architecture was that each client was configured to
apply a 60s timeout to the requests that it dispatched to
its designated DI-GRUBER decision point. If this
timeout expires, the client’s site selector then selects a
site at random, without considering USLAs. This
strategy meant that site selection performance
degraded gracefully in the event that a decision point
reached a saturation state due to many requests in
progress.

The emulated environment was composed of 300
sites representing 40,000 nodes (a grid approximately
ten times larger than Grid3 today). Each site is
composed of one or more clusters. The emulated
configuration was based on Grid3 configuration
settings in terms of CPU counts, network connectivity,
etc.

We note that this emulated environment is already
as big as some existing P2P networks. There are two
layers of communication in this environment; the sites
can be thought of as super-nodes from a P2P network,
while the 40,000 nodes can be thought of as leaves
from the P2P network. GT3 DI-GRUBER performance
is determined primarily by the number of decision
points used to answer queries, and not by the size of
the environment in which it is deployed; therefore, we
conclude that DI-GRUBER could support larger

environments without a significant negative impact on
its performance.

The workload executions are based on a model in
which jobs pass through four states: 1) submitted by a
user to a submission host; 2) submitted by a
submission host to a site, but queued or held; 3)
running at a site; and 4) completed.

3.4. GT3 DI-GRUBER Empirical Results

We now report the results of our PlanetLab
experiments.

3.4.1. Infrastructure Scalability

We used DiPerF (described in Section 2.8) to vary
slowly the participation of 110 clients. Figures 6-7
below present Response and Throughput as measured
by DiPerF, as well as the number of active clients
(Load), when using 1, 3, and 10 decision points,
respectively. (Results presented in Section 4 suggest
that performance gains obtained with more than 10
decision points would be marginal.)

DI-GRUBER GT3: 1DP/120CL

0

10

20

30

40

50

60

70

80

90

100

110

120

0 1000 2000 3000 4000 5000 6000
Time (sec)

of

 c
on

cu
rre

nt
 c

lie
nt

s
/ t

im
e

(s
ec

)

0

1

2

3

4

5

6

7

8

9

10

11

12

Th
ro

ug
hp

ut
 (q

ue
rie

s
/ s

ec
)

Service Response Time

Throughput

Load

 Minimum Median Average Maximum Standard
Deviation

Peak Response Time
(seconds) 10.5 53.8 54.4 190 15.8

Peak Throughput
(queries / second) 1.37 1.88 1.88 2.27 0.18

Figure 5: GT3 Centralized Scheduling

Service
With one decision point (Figure 5), service

response time increases steadily as the number of
concurrent machines increases; during the peak period,
the average service Response time was about 54
seconds. Throughput increases rapidly, but after about
15 concurrent clients, it plateaus at a little less than 2
queries per second; the throughput remains relatively
constant at about 1.9 queries per second even when all
110 clients are accessing the service in parallel. (We
note that a single GRUBER request involves several
round trips, and the transport of significant state, as the
site selector first requests information about current
site availabilities and then informs the decision point
about its site selection. Thus, the cost of a single

“request” is considerably higher than in the simple case
considered in Section 1.2.

With three decision points (Figure 6), Throughput
increases slowly to about 6 job scheduling requests per
second when all testing machines are accessing the
service in parallel. The service Response time is also
smaller (about 15 seconds) on average, significantly
less than with a single decision point (about 54
seconds).

DI-GRUBER GT3: 3DP/120CL

0

10

20

30

40

50

60

70

80

90

100

110

120

0 1000 2000 3000 4000 5000 6000
Time (sec)

of

 c
on

cu
rr

en
t c

lie
nt

s
/ t

im
e

(s
ec

)

0

1

2

3

4

5

6

7

8

9

10

11

12

Tr
ou

gh
pu

t (
qu

er
ie

s
/ s

ec
)

Service Response Time

Throughput

Load

 Minimum Median Average Maximum Standard
Deviation

Peak Response Time
(seconds) 3.06 13.8 15.3 102 8.31

Peak Throughput
(queries / second) 4.97 6.12 6.06 7 0.42

Figure 6: GT3 DI-GRUBER, Three Decision

Points
With 10 decision points (Figure 7), the average

service Response time decreased even further to about
10 seconds, and the achieved Throughput reached
about 8 queries per second during the peak load period.

DI-GRUBER GT3: 10DP/120CL

0

10

20

30

40

50

60

70

80

90

100

110

120

0 1000 2000 3000 4000 5000 6000
Time (sec)

of

 c
on

cu
rr

en
t c

lie
nt

s
/ t

im
e

(s
ec

)

0

1

2

3

4

5

6

7

8

9

10

11

12

Tr
ou

gh
pu

t (
qu

er
ie

s
/ s

ec
)

Service Response Time

Throughput

Load

 Minimum Median Average Maximum Standard
Deviation

Peak Response Time
(seconds) 3.53 9.66 10.3 62.9 4.14

Peak Throughput
(queries / second) 7.45 8.03 8.06 8.9 0.28

Figure 7: GT3 DI-GRUBER, 10 Decision

Points

The distributed service provides a symmetrical
behavior with the number of concurrent machines that
is independent of the state of the grid (lightly or
heavily loaded). This result verifies the intuition that
for a certain grid configuration size, there is an
appropriate number of decision points that can serve

the scheduling purposes under an appropriate
performance constraint.

The overall improvement in terms of throughput
and response time is two to three times when a three-
decision point infrastructure is deployed, while for the
ten-decision point infrastructure the throughput
increased almost five times relative to the centralized
approach.

3.4.2. Accuracy and Scheduling Performance

While the performance of a service in answering
queries is important, the accuracy of a distributed
service in providing accurate scheduling decisions is
even more important. Thus, we analyze the
performance of GT3 DI-GRUBER from the
perspectives of achieved utilization, queue time, and
accuracy.

Table 1 depicts overall GT3 DI-GRUBER
performance for the three scenarios just discussed. We
show not only QTime, Util, and Accuracy, but also
the total number of operations requested by clients and
the total number of operations “handled” by DI-
GRUBER decision points. When the former number is
greater than the latter, this means that DI-GRUBER
decision points are becoming overloaded and timeouts
are occurring, resulting in random site selection
decisions. When timeouts occur, job submissions are
delayed and thus the total number of job submissions is
reduced during the time period considered—in addition
to individual requests being scheduled less accurately.

While the values under the “All Requests” section
provide an overall view of GT3 DI-GRUBER’s
performance, they do not reflect the job scheduling
performance that would be achieved when the
scheduling workload is adapted to the system capacity.
The “Handled by GRUBER” data provide a better
measure in that regard.

Table 1: GT3 DI-GRUBER Overall Performance
 Decision

Points
% of
Req

of
Req

QTime Norm
QTime

Util Accuracy

1 40% 8673 0 0.000 3% 99%
3 53% 27486 921 0.033 24% 91%

Requests
Handled by
GRUBER 10 67% 37641 2405 0.063 33% 80%

1 60% 13009 0 0.000 2% -
3 47% 23507 993 0.042 27% -

Requests
NOT
Handled by
GRUBER

10 33% 18391 2080 0.113 23% -

1 100% 21682 256 0.513 5% 84%
3 100% 50993 5727 0.233 51% 63%

All Requests

10 100% 56032 7126 0.269 56% 60%

If we consider only jobs that were scheduled
through one of the DI-GRUBER decision points, the
results look rather different. There are four notable
differences when comparing the performance between
the requests handled and those that were not handled
by DI-GRUBER; 1) Accuracy shows significant
improvement; 2) higher Resource Utilization when

taking into consideration the percentage of requests
handled by DI-GRUBER; 3) QTime is better; and 4)
Normalized QTime (defined as the ratio between
QTime and the total number of requests) is noticeably
improved.

Note that the scenario with only one decision point
has a small QTime; this is due to the fact that within
the one hour the test was performed, the number of
requests made was smaller than in the other cases due
to lower throughput, so practically the number of jobs
entering the grid was smaller in comparison with
available resources (an expected behavior). With fewer
resources being used, it was easier for the decision
point to make good decisions, and hence the small
QTime. We computed Normalized QTime in order to
take into account both the number of requests and the
resource utilization; we see that the deceivingly low
QTime for the one decision point scenario now shows
its worse performance when compared to the other two
scenarios. (The low utilization also makes this clear.)

3.4.3. Accuracy with Synchronization

The other important dimension in our analysis is the
interval at which decision points perform
synchronization. We performed several tests using
DiPerF, where the decision points were exchanging
status information at predefined time intervals, namely 1,
3, 10, and 30 minute intervals. Figure 8 shows our
results, in this case just for jobs handled by DI-
GRUBER. We see that for the workloads considered, a
three minute exchange interval is sufficient to achieve
95% Accuracy.

80%

85%

90%

95%

100%

1 3 10 30
Exchange Interval (min)

A
cc

ur
ac

y

Figure 8: GT3 DI-GRUBER Scheduling

Accuracy as Function of the Exchange Time
Interval for Three Points

3.5. Results with GT4.0

We ported the DI-GRUBER implementation from
GT3 to the GT3.9.5 prerelease of GT4. (This release is
functionality equivalent to the final GT4.0 release, but

provides somewhat lower performance than GT4.0,
which is significantly faster than GT3.) GT4 is
implemented quite differently from GT3, and thus
experiments with this “GT4 DI-GRUBER” provide a
means for further exploration of various parameters
and behaviors based on infrastructure performance. We
consider that it is like comparing two different resource
brokers built for similar purposes but based on
different technologies.

3.5.1. Infrastructure Scalability

Using DiPerF, we varied slowly the number of
clients for this set of tests. Figures 9-11 below present
as before Response, Throughput, and Load for 1, 3,
and 10 decision points.

For one decision point (Figure 9) we see a steadily
increasing service response time as the number of
concurrent machines increases; during the peak period,
the average service Response time was about 84
seconds. Throughput increases rapidly, but after about
10 concurrent clients, plateaus just above 1 query per
second; the throughput remains relatively constant at
about 1.3 queries per second even when all testing
machines (close to 120 in this case) are accessing the
service in parallel.

DI-GRUBER GT4: 1DP/120CL

0

10

20

30

40

50

60

70

80

90

100

110

120

0 1000 2000 3000 4000 5000 6000
Time (sec)

of

 c
on

cu
rr

en
t c

lie
nt

s
/ t

im
e

(s
ec

)

0

1

2

3

4

5

6

7

8

9

10

11

12

Tr
ou

gh
pu

t (
qu

er
ie

s
/ s

ec
)

Service Response Time

Throughput

Load
 Minimum Median Average Maximum Standard

Deviation
Peak Response Time

(seconds) 48.4 85.2 84.8 122.8 14.6
Peak Throughput
(queries / second) 0.8 1.33 1.34 2.1 0.23

Figure 9: GT4 Centralized Scheduling

DI-GRUBER GT4: 3DP/120CL

0

10

20

30

40

50

60

70

80

90

100

110

120

0 1000 2000 3000 4000 5000 6000
Time (sec)

of

 c
on

cu
rre

nt
 c

lie
nt

s
/ t

im
e

(s
ec

)

0

1

2

3

4

5

6

7

8

9

10

11

12

Tr
ou

gh
pu

t (
qu

er
ie

s
/ s

ec
)

Service Response Time

Throughput

Load

 Minimum Median Average Maximum Standard
Deviation

Peak Response Time
(seconds) 3.02 24.3 26.5 72.4 12.9

Peak Throughput
(queries / second) 3.37 4.18 4.26 5.33 0.41

Figure 10: GT4 DI-GRUBER with Three

Decision Points

With three decision points (Figure 10),
Throughput increases slowly to about 4 job
scheduling requests per second when all testing
machines are accessing the service in parallel. The
service Response time is also smaller (about 26
seconds) on average compared with the previous
results (about 84 seconds).

With 10 decision points (Figure 11), the average
service Response time decreased even further to about
13 seconds, and the achieved Throughput reached
about 7.5 queries per second during the peak load
period. The distributed service provides a symmetrical
behavior with the number of concurrent machines
independent of the state of the grid (lightly or heavily
loaded). This result verifies the intuition that for a
certain grid configuration size, there is an appropriate
number of decision points that can serve the scheduling
purposes under an appropriate performance constraint.

DI-GRUBER GT4: 10DP/120CL

0

10

20

30

40

50

60

70

80

90

100

110

120

0 1000 2000 3000 4000 5000 6000
Time (sec)

of

 c
on

cu
rr

en
t c

lie
nt

s
/ t

im
e

(s
ec

)

0

1

2

3

4

5

6

7

8

9

10

11

12

Tr
ou

gh
pu

t (
qu

er
ie

s
/ s

ec
)

Service Response Time

Throughput

Load

 Minimum Median Average Maximum Standard
Deviation

Peak Response Time
(seconds) 4.35 12.2 13.1 65.8 4.75

Peak Throughput
(queries / second) 6.43 7.52 7.58 8.95 0.56

Figure 11: GT4 DI-GRUBER with 10

Decision Points

Overall, Throughput and Response improve by a
factor of three when the number of decision points is
increased from one to three, and by a factor of five

when using five decision points. Again, practically, we
see that for GT4 DI-GRUBER, three decision points
are sufficient when around 120 clients are scheduling
jobs. This result is confirmed analytically in Section 4.

3.5.2. Accuracy and Scheduling Performance

Next, we analyze the performance of the GT4 DI-
GRUBER and its strategies for providing accurate
scheduling decisions as in the GT3 case. Again, we
look from both an infrastructure complexity and
synchronization interval point of view.

Table 2 depicts the overall performance of GT4 DI-
GRUBER in the scenarios introduced before. Again,
the values under the “All Requests” section provide an
overall view of the implementation’s performance, but
do not reflect actual performance.

Table 2: GT4 DI-GRUBER Overall Performance
 Decision

Points
% of
Req

of
Req

QTime Norm
QTime

Util Accuracy

1 53% 3852 0 0.000 3% 98%
3 92% 24048 452 0.018 16% 90%

Requests
Handled by
GRUBER 10 93% 37593 2501 0.066 35% 75%

1 47% 3382 0 0.000 7% -
3 8% 1893 36 0.019 4% -

Requests
NOT
Handled by
GRUBER

10 7% 2567 220 0.085 6% -

1 100% 7234 0 0.000 10% 94%
3 100% 25941 660 0.025 20% 81%

All Requests

10 100% 40160 3017 0.075 41% 68%

If we consider only jobs that were scheduled
through a single DI-GRUBER decision point, the
results do not look that different, except for the one-
decision point case. The explanation is that in the three
and ten decision point cases, GT4 DI-GRUBER was
able to handle almost all requests successfully, which
is different from the GT3 DI-GRUBER.

3.5.3. Accuracy with Synchronization

Using DiPerF, we performed several tests where
the decision points were exchanging status information
at the same predefined time intervals (1, 3, 10, and 30
minutes). The results in Figure 12 show that in the
GT4 case, for a three decision point infrastructure a
three to ten minutes exchange interval is sufficient for
achieving almost 90% Accuracy. This value depends
also on the number of the jobs scheduled by the
decision points.

80%

85%

90%

95%

100%

1 3 10 30
Exchange Interval (min)

A
cc

ur
ac

y

Figure 12: GT4 DI-GRUBER Scheduling

Accuracy as Function of Exchange Time
Interval for Three Decision Points

4. Infrastructure Dynamic Evaluation

While the above results are encouraging and
meaningful for the settings we performed, one can
reasonably argue that the appropriate number of
decision points needed may depend on the dynamics,
performance, and state of a particular grid.

Thus, we next focus on extracting meaningful
elements that DI-GRUBER decision points can use to
provide dynamic information (such as maximum load)
that can be used to determine whether or not the
saturation point was reached.

4.1. Evaluation Criteria

Saturation identification: The first element we
want to identify is when the DI-GRUBER decision
points get saturated. We use performance models
created by DiPerF to establish an upper bound on the
number of transactions that a decision point can handle
per time interval. When this upper bound is reached, a
decision point can trigger a “saturation” signal to a
third party monitoring service responsible for handling
these events.

Overall decision points needed per decision point
set: Having information from each individual decision
points about their state, a third party observer can
decide dynamically what steps should be taken to
reconfigure the scheduling infrastructure, for example
by adding decision points or by rebalancing load
among existing decisions points to avoid overloading.

In order to validate the proposed enhancements, we
have developed a simple simulator (GRUB-SIM)
capable of simulating DI-GRUBER decision points.
We were interested in providing a simple means for
dynamic identification of the number of required DI-
GRUBER decision points starting from the logs we
collected in the previous chapters. In essence, GRUB-
SIM took the traces from the tests presented in the
previous section, and attempted to identify the

saturation points and the optimum number of decision
points needed.

4.2. GRUB-SIM Results

GRUB-SIM automatically traces the Response
metric and all overloads events, and simulates new
decision points on the fly. The results are gathered in
Table 3 and they provide the number of decision points
required in each situation for achieving an adequate
Response from DI-GRUBER. We see that for the
GT3-based implementation, a total of 4 decision points
was necessary. On the other hand, for the GT4 DI-
GRUBER, a total of 5 decision points were needed.

Table 3: Required Decision Points
Additional Decision Points Decision Points GT3-based GT4-based

1 3 4
3 1 2
10 0 0

While these results are encouraging, we do not have

a DI-GRUBER implementation for such an approach.
We hope to produce such an implementation in future
work. However, these results strengthen our claim that
only a few decision points, namely about 4 or 5, are
enough to handle the scheduling for a grid that is 10
times larger than today’s Grid3.

5. Related Work

A policy based scheduling framework for grid-
enabled resource allocations is under development at
the University of Florida [22]. This framework
provides scheduling strategies that (a) control the
request assignment to grid resources by adjusting
resource usage accounts or request priorities; (b)
manage efficiently resources assigning usage quotas to
intended users; and (c) supports reservation based grid
resource allocation. One important difference of DI-
GRUBER is the lack of an assumption of a centralized
scheduling point.

The Grid Service Broker, a part of the GridBus
Project, mediates access to distributed resources by (a)
discovering suitable data sources for a given analysis
scenario, (b) suitable computational resources, (c)
optimally mapping analysis jobs to resources, (d)
deploying and monitoring job execution on selected
resources, (e) accessing data from local or remote data
source during job execution, and (f) collating and
presenting results. The broker supports a declarative
and dynamic parametric programming model for
creating grid applications [23]. An important difference
is that GridBus does not support the notions of sites,
submission hosts, and virtual organizations or groups.

Cremona is a project developed at IBM as a part of
the ETTK framework [9]. It is an implementation of
the WS-Agreement specification and its architecture
separates multiple layers of agreement management,
orthogonal to the agreement management functions:
the Agreement Protocol Role Management, the
Agreement Service Role Management, and the
Strategic Agreement Management. Cremona focuses
on advance reservations, automated SLA negotiation
and verification, as well as advanced agreement
management. DI-GRUBER instead targets a different
environment model, in which the main players are VO
and resource providers with opportunistic needs (free
resources are acquired when available).

6. Conclusions and Future Work

Managing USLAs within large virtual organizations
that integrate participants and resources spanning
multiple physical institutions is a challenging problem.
Maintaining a single unified decision point for USLA
management is a problem that arises when many users
and sites need to be managed. We provide a solution,
namely DI-GRUBER, to address the question on how
SLAs can be stored, retrieved and disseminated
efficiently in a large distributed environment. The key
question this paper addresses is the scalability and
performance of scheduling infrastructures, DI-
GRUBER in our case, in large Grid environments.

The contributions of this paper are the results we
achieved on two dimensions: how well our proposed
solution performed in practice (three to ten decision
points prove to be enough to handle a grid ten times
larger than today’s Grid3/OSG [18], with four to five
decision points being sufficient as refined by GRUB-
SIM) and a methodology to measure the success of
such a meta-scheduler (performance metrics). We also
introduced two enhancements to our previous
GRUBER framework, namely the distributed approach
in resource scheduling and USLA management, and an
approach for dynamic computing the number of
decision points for various grid settings.

We note that DI-GRUBER is a complex service: a
query to a decision point may include multiple
message exchanges between the submitting client and
the decision point, and multiple message exchanges
between the decision points and the job manager in the
grid environment. In a WAN environment with
message latencies in the 100s of milliseconds, a single
query can easily take multiple of seconds to serve. We
expect that performance will be significantly better in a
LAN environment. However, one of DI-GRUBER’s
design goals was to offer resource brokering in a WAN
environment such as grids.

While the transaction rate for the DI-GRUBER
service is fairly low compared to other transaction
processing systems [2,3,4], this rate proved to be
sufficient in the Grid3 context [25]; furthermore, these
other transaction processing systems were designed to
be deployed in a LAN environment. Also, the
transaction speed increases linearly with the number of
decision points deployed over a grid. DI-GRUBER
performance can be improved further by porting it to a
C-based Web services core, such as is supported in
GT4 [29]. The performance of DI-GRUBER could also
be enhanced further simply by deploying it in a
different environment that would have a tighter
coupling between the resource broker (DI-GRUBER)
and the job manager (Euryale); this approach would
reduce the complexity of the communication from two
layers to one layer.

We note that DI-GRUBER scaled almost linearly
as we tested its performance with 1, 3, and 10 decision
points respectively. The graphs (from Sections 3.4 and
3.5) that involve multiple decision points (especially
with 10), it was expected to have a two-fold increase in
clients with only one-fold increase in response time.
For the graphs with only one decision point, the two-
fold increase in clients resulted in roughly a two-fold
increase in response time.

Also, by increasing the number of decision points
(cooperating brokers that communicate via a flooding
protocol) the throughput climbs to approximately 70
transactions/second with a low response time. This
observation leads us to conclude that the required
number of “decision” nodes to ensure scalability in a
two-layer scheduling system like DI-GRUBER is
relatively small.

There are certain issues that we did not address in
this paper. For instance, our analysis did not consider
certain different methods of information dissemination
among decision points. Furthermore, validating our
results would involve performing these tests on a larger
real grid than exists today.

Acknowledgements: This work was supported by the
NSF Information Technology Research GriPhyN project,
under contract ITR-0086044.

References

1. Dumitrescu, C. and I. Foster, “Usage Policy-based CPU
Sharing in Virtual Organizations”, in 5th International
Workshop in Grid Computing, 2004, Pittsburg, PA.

2. Condor Project, Condor-G, www.cs.wisc.edu/condor/,
2002.

3. Altair Grid Technologies, LLC, A Batching Queuing
System, Software Project, Software Project, 2003.

4. Platform Computing Corporation, Administrator's Guide,
Version 4.1. February 2001.

5. Cluster Resources, Inc., Maui Scheduler, Software Project,
2001-2005.

6. Foster, I., et al., “End-to-End Quality of Service for High-
end Applications”, Computer Communications, 2004. 27
(14): p. 1375-1388.

7. S. Tuecke, et al., “Grid Service Specification”.
8. Dan, A., C. Dumitrescu, and M. Ripeanu, “Connecting

Client Objectives with Resource Capabilities: An Essential
Component for Grid Service Management Infrastructures”,
in ACM International Conference on Service Oriented
Computing (ICSOC'04). 2004. New York.

9. Ludwig, H., A. Dan, and B. Kearney, “Cremona: An
Architecture and Library for Creation and Monitoring WS-
Agreements”, in ACM International Conference on Service
Oriented Computing (ICSOC'04). 2004. New York.

10. Pearlman, L., et al., “A Community Authorization Service
for Group Collaboration”, in IEEE 3rd International
Workshop on Policies for Distributed Systems and
Networks, 2002.

11. Avery, P. and I. Foster, “The GriPhyN Project: Towards
Petascale Virtual Data Grids”, 2001.

12. Chervenak, A., et al., “The Data Grid: Towards an
Architecture for the Distributed Management and Analysis
of Large Scientific Data Sets”, J. Network and Computer
Applications, 2001(23): p. 187-200.

13. Dumitrescu, C., et al., “DiPerF: Automated DIstributed
PERformance testing Framework”, in 5th International
Workshop in Grid Computing, 2004, Pittsburg, PA.

14. Ripeanu, M. and I. Foster, “A Decentralized, Adaptive,
Replica Location Service”, in 11th IEEE International
Symposium on High Performance Distributed Computing.
2002. Edinburgh, Scotland: IEEE Computer Society Press.

15. Gimpel, H., et al., “PANDA: Specifying Policies for
Automated Negotiations of Service Contracts”, in the 1st
International Conference on Service Oriented Computing.
2003. Trento, Italy.

16. Ranganathan, K. and I. Foster, “Simulation Studies of
Computation and Data Scheduling Algorithms for Data
Grids”, Journal of Grid Computing, 2003, 1 (1).

17. Ranganathan, K. and I. Foster, “Decoupling Computation
and Data Scheduling in Distributed Data-Intensive
Applications”, in 11th IEEE International Symposium on
High Performance Distributed Computing. 2002.
Edinburgh, Scotland: IEEE Computer Society Press.

18. Foster, I., et al., “The Grid2003 Production Grid: Principles
and Practice”, in 13th International Symposium on High
Performance Distributed Computing. 2004.

19. Legrand, I.C., et al., “MonALISA: A Distributed
Monitoring Service Architecture”, in Computing in High
Energy Physics. 2003. La Jolla, CA.

20. Kay, J. and P. Lauder, “A Fair Share Scheduler”, University
of Sydney, AT&T Bell Labs, 1998.

21. Henry, G.J., “A Fair Share Scheduler”, AT&T Bell
Laboratory Technical Journal, October 1984, 3 (8).

22. I., In, J., P. Avery, R. Cavanaugh, and S. Ranka, “Policy
Based Scheduling for Simple Quality of Service in Grid
Computing”, in International Parallel & Distributed
Processing Symposium (IPDPS), April '04, New Mexico.

23. Buyya, R., “GridBus: A Economy-based Grid Resource
Broker”, The University of Melbourne: Melbourne, 2004.

24. Dumitrescu, C. and I. Foster, "GangSim: A Simulator for
Grid Scheduling Studies", in Cluster Computing and Grid
(CCGrid), UK, May 2005.

25. Dumitrescu, C., Foster, I., “GRUBER: A Grid Resource
SLA Broker”, in Euro-Par, Portugal, September 2005.

26. A. Bavier et al., “Operating System Support for Planetary-
Scale Services”, Proceedings of the First Symposium on
Network Systems Design and Implementation (NSDI),
March 2004.

27. B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.
Wawrzoniak, and M. Bowman, “PlanetLab: An Overlay
Testbed for Broad-Coverage Services,” ACM Computer
Communications Review, vol. 33, no. 3, July 2003.

28. Voeckler, J., “Euryale: Yet Another Concrete Planner”, in
Virtual Data Workshop, May 18th, 2004.

29. M. Humphrey, G. Wasson, K. Jackson, J. Boverhof, M.
Rodriguez, Joe Bester, J. Gawor, S. Lang, I. Foster, S.
Meder, S. Pickles, and M. McKeown, “State and Events for
Web Services: A Comparison of Five WS-Resource
Framework and WS-Notification Implementations”, 4th
IEEE International Symposium on High Performance
Distributed Computing (HPDC-14), Research Triangle
Park, NC, 24-27 July 2005.

