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Abstract 

Managing usage service level agreements (USLAs) 
within environments that integrate participants and 
resources spanning multiple physical institutions is a 
challenging problem. Maintaining a single unified 
USLA management decision point over hundreds to 
thousands of jobs and sites can become a bottleneck in 
terms of reliability as well as performance. DI-
GRUBER, an extension to our GRUBER brokering 
framework, was developed as a distributed grid USLA-
based resource broker that allows multiple decision 
points to coexist and cooperate in real-time. DI-
GRUBER addresses issues regarding how USLAs can 
be stored, retrieved, and disseminated efficiently in a 
large distributed environment. The key question this 
paper addresses is the scalability and performance of 
DI-GRUBER in large Grid environments. We conclude 
that as little as three to five decision points can be 
sufficient in an environment with 300 sites and 60 VOs, 
an environment ten times larger than today’s Open 
Science Grid.  

1. Introduction  

The motivating scenarios for our work are large 
grid environments in which providers wish to grant 
consumers the right to use certain resources for some 
agreed-upon time period. Providers might be 
companies providing outsourcing services, or scientific 
laboratories that provide different collaborations with 
access to their computers or other resources. * 

Providers and consumers may be nested: a provider 
may function as a middleman, providing access to 
resources to which the provider has itself been granted 
access by some other provider. USLA issues can arise 
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at multiple levels in such scenarios. Providers want to 
express (and enforce) the USLAs under which 
resources are made available to consumers. Consumers 
want to access and interpret USLA statements 
published by providers, in order to monitor their 
agreements and guide their activities. Both providers 
and consumers want to verify that USLAs are applied 
correctly.  

We present here a technique for constructing a 
scalable management service with support for USLA 
expression, publication, discovery, interpretation, 
enforcement, and verification [1]. This problem 
encompasses challenging and interrelated scheduling, 
information synchronization, and scalability issues. We 
build on previous work concerning the specification 
and enforcement of local resource scheduling policies 
[2,3,4,5,6], the GRUBER broker [1,25], and the 
scalability and performance measurements of various 
grid services [13]. GRUBER addresses issues 
regarding how USLAs can be stored, retrieved, and 
disseminated efficiently in a distributed environment. 
GRUBER has been implemented in both the Web 
Services (WS) and pre-WS versions of the Globus 
Toolkit (GT).  

Here we introduce a two layer scheduling 
infrastructure, DI-GRUBER, capable of working over 
large grids. DI-GRUBER extends GRUBER by 
introducing support for multiple scheduling decision 
points, loosely synchronized via periodic information 
exchange. Our focus is on measuring both the 
capability and performance of such a framework, as 
well as gaining insights about the number of decision 
points required under a certain load.  

The rest of this article is organized as follows. We 
first provide a more detailed description of the problem 
that we address. We then discuss the background 
information about the tools used to perform these 
experiments, as well as the model used for USLA 
enforcement. Section 3 contains the description of the 
experiments, the results we achieved, and some 
improvements we consider necessary for our 
framework for dynamically re-configuring. Section 4 
contains additional simulation results and 
enhancements proposed for future work. The rest of the 
paper focuses on related work and on our conclusions. 
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1.1.  Problem Statement  

This work targets grids that may comprise hundreds 
of institutions and thousands of individual investigators 
that collectively control tens or hundreds of thousands 
of computers and associated storage systems [11,12]. 
Each individual investigator and institution may 
participate in, and contribute resources to, multiple 
collaborative projects that can vary widely in scale, 
lifetime, and formality. At one end of the spectrum, 
two collaborating scientists may want to pool resources 
for the purposes of a single analysis. At the other 
extreme, the major physics collaborations associated 
with the Large Hadron Collider encompass thousands 
of physicists at hundreds of institutions, and need to 
manage workloads comprising dynamic mixes of work 
of varying priority, requiring the efficient aggregation 
of large quantities of computing resources.  

In this paper we focus on techniques for 
constructing a scalable service and measure its 
performance. It is important to understand the 
problems we face in order to come up with appropriate 
solutions. First, we investigate performance issues and 
service reliability. Then, we examine techniques for 
determining dynamically the number of decision points 
required for the large grid scenarios considered in this 
paper.  

1.2.  Performance Issues 

How fast can a site selector service process 
requests? We address this question in detail later in the 
paper, but to provide some initial data we have 
performed several experiments using DiPerF, a 
distributed performance-testing framework designed to 
simplify and automate service performance evaluation 
(see Section 2.8).  
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Figure 1: GT3.2 Service Instance Creation: 

Response time, Throughput, and Server Load 

We use DiPerF to perform tests on service instance 
creation in a GT3 Java Web Service similar to the first 
GRUBER implementation as described in Section 2.2. 

We found a peak throughput of about 14 requests per 
second. (The factors limiting performance are 
primarily authentication and SOAP processing. While 
GT4 and the latest Apache Axis on which it builds 
provides significant improvements in both areas [29], 
limits will always remain.) Furthermore, service 
response time increases with load, from an average of 
about 4s under ‘normal’ load to about 10s under 
‘heavy’ load.  

Workloads on large grids such as the Open Science 
Grid (OSG: previously known as Grid3 [18]) require 
both higher job submission rates and reduced roundtrip 
times. Thus, we need to investigate other ways of 
building and organizing scheduling infrastructures for 
large grids with many submitting hosts, and to 
understand the implications of those alternative 
structures on performance and scheduling decision 
accuracy. 

1.3. Service Reliability Issues  

Another problem often encountered in large 
distributed environments concerns service reliability 
and availability. USLA service providers are subject to 
high load, due both the high request rates mentioned 
above and the need to support interactions relating to 
USLA modification. We cannot afford for this 
infrastructure to fail. The administrative costs of 
maintaining a USLA and scheduling infrastructure 
should not increase with the number of resource 
providers and VOs participating in resource sharing 
actions [10]. 

1.4.  USLA Privacy Issues 

Another problem faced in practice is the necessity 
for privacy when sensitive computing resources are 
shared. USLA specification, enforcement, negotiation, 
and verification mechanisms arise at multiple levels 
within VO-based environments. Resource providers 
want to establish, modify, enforce, and instrument 
USLAs concerning how their resources are made 
available to different participants and/or for different 
purposes.  

In certain cases, users can require various privacy 
issues for the availability of information about their 
work (job types and priorities, data movement and 
characteristics). Thus, the maintenance of a private 
broker could be a necessity in such a situation. This 
issue can be encountered from the VO level on down 
to individual users. The problem becomes even more 
sensible when dealing with commercial entities [15]. 
Privacy for USLAs is outside the scope of this paper, 
but is an important topic. 



 

2. Background Information 

We now introduce the main concepts and tools used 
in this paper.  

2.1.  USLA Enforcement Model  

The environment model that we use in our work is 
depicted in Figure 2 [16,17]. Note in particular the 
decision points (also know as policy enforcement 
points or PEPs), which are responsible for executing 
USLAs. These components gather monitoring metrics 
and other information relevant to their operations, and 
then use this information to steer resource allocations 
as specified by the USLAs [1].  

 

 
Figure 2: VO-Level Architecture  

We distinguish between two types of PEPs. Site 
policy enforcement points (S-PEPs) reside at all sites 
and enforce site-specific policies. In our experiments, 
we did not take S-PEPs into consideration as they were 
outside our scope, and assumed the decision points 
have total control over scheduling decisions. 

VO policy enforcement points (“decision points”), 
associated with VOs, operate in a similar way to S-
PEPs. They make decisions on a per-job basis to 
enforce USLAs regarding VO specifications for 
resource allocations to VO groups or to types of work 
executed by the VO. Decision points are invoked when 
VO planners make job planning and scheduling 
decisions to select which jobs to run, when to send 
them to a site scheduler, and which sites to run them at. 
Decision points interact with S-PEPs and schedulers to 
enforce VO-level USLA specifications.  

2.2.  DI-GRUBER Broker Decision Point  

We have already developed GRUBER [25], a 
prototype Grid V-PEP and S-PEP infrastructure that 
implements the USLA management model introduced 
before. GRUBER is the main component that we used 
for the job scheduling over a hypothetic grid similar to 
Grid3 [18]. It is able to perform job scheduling based 

on notions such as VO, group VO, and USLAs at 
various levels. The main four principal components are 
described next. 

The GRUBER engine is the main component of the 
architecture. It implements various algorithms for 
detecting available resources and maintains a generic 
view of resource utilization in the grid.  

The GRUBER site monitor is a data provider for the 
GRUBER engine. This component is optional and can 
be replaced with various other grid monitoring 
components that provide similar information, such as 
MonaLisa or Grid Catalog.  

A GRUBER client represents a standard GT client 
that allows communication with other GRUBER 
components and the GRUBER engine, such as the 
GRUBER site selectors that we introduce next.  

GRUBER site selectors are tools that communicate 
with the GRUBER engine and provide answers to the 
question: “which is the best site at which I can run this 
job?”. Site selectors can implement various task 
assignment policies, such as round robin, least used, or 
least recently used task assignment policies.  

Finally, the GRUBER queue manager is a 
GRUBER client that resides on a submitting host. This 
component monitors VO policies and decides how 
many jobs to start and when. It interacts with the 
GRUBER engine to obtain site selection 
recommendations.  

 

 
Figure 3: GRUBER Architecture 

In the work reported here, we use the GRUBER 
engine and site selectors but not the queue manager. In 
this configuration, GRUBER is used only as a site 
recommender: it does not enforce VO-level USLAs, by 
for example removing a site for an already over-quota 
VO user at that site. In effect, we assume that all 
clients comply with the recommendations and that 
there is thus no need for enforcement. 

GRUBER does not itself perform job submission, 
but as shown in Figure 3 can be used in conjunction 
with various grid job submission infrastructures. In the 
work we describe here, we interface with the Euryale 
tool. 



 

2.3. GRUBER USLA Semantics  

We review how USLAs are described. Much 
research from the web-service provisioning community 
deals with these issues in detail [5,6,8,9,10,15,23].  

In the experiments described in this paper we use a 
USLA representation based on Maui semantics and 
WS-Agreement syntax [8,9,15]. Allocations are made 
for processor time, permanent storage, or network 
bandwidth resources, and there are at least two levels 
of resource assignments: to a VO, by a resource owner, 
and to a VO user or group, by a VO. We started from 
Maui semantics in providing support for fair-share rule 
specification [5]. Each entity has a fair share type and 
fair share percentage value, e.g., VO0 15.5, VO1 10.0+, 
VO2 5.0-. The sign after the percentage indicates if the 
value is a target (no sign), upper limit (+), or lower 
limit (-).  

We extended the semantics by associating both a 
consumer and a provider with each entry; extending 
the specification in a recursive way to VOs, groups; 
and users, and allowing more complex sharing rules as 
defined in the WS-Agreement. Further, we express 
allocations as WS-Agreement goals allowing the 
specification of rules with a finer granularity. We 
based our SLA specification on a subset of WS-
Agreement, taking advantage of the refined 
specification and the high-level structure. We use a 
simple schema that allows for monitoring resources 
and goal specifications [5,8,9].  

2.4. Euryale as Concrete Planner 

Euryale [28] is a system designed to run jobs over 
large grids such as OSG [18]. Euryale uses Condor-G 
[2] (and thus the Globus Toolkit GRAM) to submit and 
monitor jobs at sites. It takes a late binding approach in 
assigning jobs to sites, meaning that site placement 
decisions are made immediately prior to running the 
job, rather than in an earlier planning phase. Euryale 
also implements a simple fault tolerance mechanism by 
means of job re-planning when a failure is discovered. 
We use the Euryale planner as our job submission tool 
and GRUBER interface. 

A tool called DagMan executes the Euryale 
prescript and postscript. The prescript calls out to the 
external site selector (i.e., in our case, GRUBER) to 
identify the site on which the job should run, rewrites 
the job submit file to specify that site, transfers 
necessary input files to that site, registers transferred 
files with the replica mechanism, and deals with re-
planning. The postscript file transfers output files to 
the collection area, registers produced files, checks on 
successful job execution, and updates file popularity.  

2.5. Information Dissemination Strategies 

An important issue for a decentralized brokering 
service is how USLAs and usage information are 
disseminated among decision points. We need to 
aggregate correctly partial information gathered at 
several points; without a correct aggregation of the 
partial information, wrong decisions can result in 
workload starvation and resource under-utilization.  

This problem can be addressed in several ways. In a 
first approach, both resource usage information and 
USLAs are exchanged among decision points. In a 
second approach, only utilization information is 
exchanged. As possible variations on these two 
approaches, whenever new sites are detected, their 
status is incorporated locally, which means that each 
decision point has only a partial view of the 
environment. In a third approach, no usage information 
is exchanged and each decision point relies only on its 
own mechanisms for detecting grid status.  

For the experiments in this paper, we focus on the 
second approach and the assumption that each decision 
point has complete “static” knowledge about available 
resources, but not the latest resource utilizations. An 
advantage of this approach is the simplified 
implementation by avoiding USLA tracking. 

2.6.  Open Science Grid  

Open Science Grid (OSG: previously known as 
Grid3 [18]) is a multi-virtual organization environment 
that sustains production level services required by 
various physics experiments. The infrastructure 
comprises more than 50 sites and 4500 CPUs, over 
1300 simultaneous jobs and more than 2 TB/day 
aggregate data traffic. The participating sites are the 
main resource providers under various conditions. We 
consider in this paper an environment similar to OSG 
but ten times larger and with much higher rates of job 
scheduling [18]. GRUBER (and the DI-GRUBER 
enhancement) provides a USLA-based solution for job 
scheduling decisions for environments similar to OSG, 
by providing a means for informed site selection at the 
job level and beyond.  

2.7.  PlanetLab Testbed  

PlanetLab [26,27] is a geographically distributed 
platform for deploying, evaluating, and accessing 
planetary-scale network services. PlanetLab is a shared 
community effort by a large international group of 
researchers, each of whom gets access to one or more 
isolated “slices” of PlanetLab’s global resources via a 
concept called distributed virtualization. PlanetLab 



 

now comprised over 500 nodes (Linux-based PCs or 
servers connected to the PlanetLab overlay network) 
distributed worldwide. Almost all nodes are connected 
via 10 Mb/s network links (with 100Mb/s on several 
nodes), have processor speeds exceeding 1.0 GHz 
IA32 PIII class processor, and at least 512 MB RAM.  

2.8.  DiPerF  

For all the experiments in this paper, we used the 
DiPerF tool, a distributed performance testing 
framework. DiPerF coordinates several machines in 
executing a performance service client and collects 
various metrics about the performance of the tested 
service. The framework is composed of a 
controller/collector, several submitter modules and a 
tester component [13]. DiPerF was originally designed 
for testing a single point service. For the experiments 
reported here, we extended it to enable testing of 
distributed services such as DI-GRUBER. Simply, 
each tester instantiates a client connected to a single 
DI-GRUBER decision point. When scheduling a job, 
each such client interacts with its DI-GRUBER 
decision point to obtain site load information, and then 
executes site selector logic to determine the site to 
which the job should be dispatched. DiPerF allowed us 
to concentrate on the performance and scalability of 
DI-GRUBER rather than on how to perform large scale 
testing involving 100+ clients. 

3. Empirical Results  

In this section, we focus on measuring several 
characteristics of the DI-GRUBER implementation in a 
large environment. We present results for both GT3 
and GT4 implementations of DI-GRUBER. Due to the 
fact that we do not have access to a large enough grid, 
we emulated the entire environment on PlanetLab 
[26,27].  

3.1.  Architecture Analysis  

This section describes the performance analysis 
study we conducted to evaluate various DI-GRUBER 
configurations. In particular, we wanted to determine 
whether CPU resources could be allocated in a fair 
manner across multiple VOs, and across multiple 
groups within a VO, when using DI-GRUBER 
configurations that feature multiple loosely coupled 
GRUBER instances rather than a single centralized 
instance. The factors that we consider include both the 
number of GRUBER instances and the frequency of 
communication of state information among those 
decision points. Figure 4 depicts in a schematic way 

the layout of the scenarios we used for our 
performance measurements.  

 

 
Figure 4: Multiple Decision Points 

In either the single or multiple decision point 
scenario, each decision point maintains a full view of 
the resource usages and utilizations by monitoring 
scheduling decisions. 

3.2.  Performance Metrics  

We use five metrics to evaluate the effectiveness of 
DI-GRUBER: Average Response Time (Response), 
Average Throughput (Throughput), Queue Time 
(QTime), Average Resource Utilization (Util), and 
Average Scheduling Accuracy (Accuracy). Each 
metric is important, as a good infrastructure will both 
maximize delivered resources and meet owner intents.  

We define Response as follows, with RTi being the 
individual job time response and N being the number 
of jobs processed during the execution period:  

Response = Σi=1..N RTi / N 

Throughput is defined as the number of requests 
completed successfully by the service per unit time.  

We define QTime for an entire VO as follows, with 
QTi being the individual job queue time, i.e., the time 
that elapses between the job being dispatched to a site 
and the job starting execution:  

QTime = Σi=1..N QTi / N 

Response and QTime focus on different elements. 
While Response measures the service responsiveness, 
QTime measures how fast a job is placed in execution 
after scheduling, and thus provides a more direct 
measure of the scheduling service’s ability to good 
scheduling decisions.  

We define Util as the ratio of the CPU time actually 
consumed by the N jobs executed during the period 
considered (Σ ETi) to the total CPU time available over 
that time:  

Util = Σi=1..N (ETi) / (#cpus * ∆t) 

Finally, we define the scheduling accuracy for a 
specific job (SAi) as the ratio of free resources at the 



 

selected site to the total free resources over the entire 
grid. Accuracy is then the aggregated value of all 
scheduling accuracies measured for each individual 
job:  

Accuracy = Σi=1..N (SAi) / N  

3.3. Experimental Environment  

We used between one and ten GT3 DI-GRUBER 
decision points deployed on PlanetLab nodes [26,27]. 
Each decision point maintained a view of the 
configuration of the global DI-GRUBER environment, 
via the periodic exchange (in the experiments that 
follow, every three minutes) with other decision points 
of information about recent job dispatch operations. 
The decision points are connected in a mesh, a simple 
configuration that is adopted to simplify analysis and 
understanding.  

We used composite workloads that overlay work for 
60 VOs and 10 groups per VO. The experiment 
duration was one hour in all cases, and jobs were 
submitted every second from a submission host. Each 
of a total of about 120 submission hosts (“clients”) 
maintained a connection with only one DI-GRUBER 
decision point, selected randomly in the beginning— 
thus simulating a scenario in which each submission 
site is associated statically with a single decision point.  

An important characteristic of our experimental 
architecture was that each client was configured to 
apply a 60s timeout to the requests that it dispatched to 
its designated DI-GRUBER decision point. If this 
timeout expires, the client’s site selector then selects a 
site at random, without considering USLAs. This 
strategy meant that site selection performance 
degraded gracefully in the event that a decision point 
reached a saturation state due to many requests in 
progress. 

The emulated environment was composed of 300 
sites representing 40,000 nodes (a grid approximately 
ten times larger than Grid3 today). Each site is 
composed of one or more clusters. The emulated 
configuration was based on Grid3 configuration 
settings in terms of CPU counts, network connectivity, 
etc. 

We note that this emulated environment is already 
as big as some existing P2P networks. There are two 
layers of communication in this environment; the sites 
can be thought of as super-nodes from a P2P network, 
while the 40,000 nodes can be thought of as leaves 
from the P2P network. GT3 DI-GRUBER performance 
is determined primarily by the number of decision 
points used to answer queries, and not by the size of 
the environment in which it is deployed; therefore, we 
conclude that DI-GRUBER could support larger 

environments without a significant negative impact on 
its performance. 

The workload executions are based on a model in 
which jobs pass through four states: 1) submitted by a 
user to a submission host; 2) submitted by a 
submission host to a site, but queued or held; 3) 
running at a site; and 4) completed.  

3.4.  GT3 DI-GRUBER Empirical Results  

We now report the results of our PlanetLab 
experiments.  

3.4.1. Infrastructure Scalability  

We used DiPerF (described in Section 2.8) to vary 
slowly the participation of 110 clients. Figures 6-7 
below present Response and Throughput as measured 
by DiPerF, as well as the number of active clients 
(Load), when using 1, 3, and 10 decision points, 
respectively. (Results presented in Section 4 suggest 
that performance gains obtained with more than 10 
decision points would be marginal.)  
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Figure 5: GT3 Centralized Scheduling 

Service 
With one decision point (Figure 5), service 

response time increases steadily as the number of 
concurrent machines increases; during the peak period, 
the average service Response time was about 54 
seconds. Throughput increases rapidly, but after about 
15 concurrent clients, it plateaus at a little less than 2 
queries per second; the throughput remains relatively 
constant at about 1.9 queries per second even when all 
110 clients are accessing the service in parallel. (We 
note that a single GRUBER request involves several 
round trips, and the transport of significant state, as the 
site selector first requests information about current 
site availabilities and then informs the decision point 
about its site selection. Thus, the cost of a single 



 

“request” is considerably higher than in the simple case 
considered in Section 1.2. 

With three decision points (Figure 6), Throughput 
increases slowly to about 6 job scheduling requests per 
second when all testing machines are accessing the 
service in parallel. The service Response time is also 
smaller (about 15 seconds) on average, significantly 
less than with a single decision point (about 54 
seconds).  
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Figure 6: GT3 DI-GRUBER, Three Decision 

Points 
With 10 decision points (Figure 7), the average 

service Response time decreased even further to about 
10 seconds, and the achieved Throughput reached 
about 8 queries per second during the peak load period.  

 

DI-GRUBER GT3: 10DP/120CL

0

10

20

30

40

50

60

70

80

90

100

110

120

0 1000 2000 3000 4000 5000 6000
Time (sec)

# 
of

 c
on

cu
rr

en
t c

lie
nt

s
/ t

im
e 

(s
ec

)

0

1

2

3

4

5

6

7

8

9

10

11

12

Tr
ou

gh
pu

t (
qu

er
ie

s 
/ s

ec
)

Service Response Time

Throughput

Load

 Minimum Median Average Maximum Standard 
Deviation

Peak Response Time 
(seconds) 3.53 9.66 10.3 62.9 4.14 

Peak Throughput 
(queries / second) 7.45 8.03 8.06 8.9 0.28 

 

 
Figure 7: GT3 DI-GRUBER, 10 Decision 

Points 

The distributed service provides a symmetrical 
behavior with the number of concurrent machines that 
is independent of the state of the grid (lightly or 
heavily loaded). This result verifies the intuition that 
for a certain grid configuration size, there is an 
appropriate number of decision points that can serve 

the scheduling purposes under an appropriate 
performance constraint.  

The overall improvement in terms of throughput 
and response time is two to three times when a three-
decision point infrastructure is deployed, while for the 
ten-decision point infrastructure the throughput 
increased almost five times relative to the centralized 
approach. 

3.4.2. Accuracy and Scheduling Performance  

While the performance of a service in answering 
queries is important, the accuracy of a distributed 
service in providing accurate scheduling decisions is 
even more important. Thus, we analyze the 
performance of GT3 DI-GRUBER from the 
perspectives of achieved utilization, queue time, and 
accuracy. 

Table 1 depicts overall GT3 DI-GRUBER 
performance for the three scenarios just discussed. We 
show not only QTime, Util, and Accuracy, but also 
the total number of operations requested by clients and 
the total number of operations “handled” by DI-
GRUBER decision points. When the former number is 
greater than the latter, this means that DI-GRUBER 
decision points are becoming overloaded and timeouts 
are occurring, resulting in random site selection 
decisions. When timeouts occur, job submissions are 
delayed and thus the total number of job submissions is 
reduced during the time period considered—in addition 
to individual requests being scheduled less accurately. 

While the values under the “All Requests” section 
provide an overall view of GT3 DI-GRUBER’s 
performance, they do not reflect the job scheduling 
performance that would be achieved when the 
scheduling workload is adapted to the system capacity. 
The “Handled by GRUBER” data provide a better 
measure in that regard. 

Table 1: GT3 DI-GRUBER Overall Performance  
 Decision 

Points 
% of 
Req 

# of 
Req 

QTime Norm 
QTime 

Util Accuracy 

1 40% 8673 0 0.000 3% 99% 
3 53% 27486 921 0.033 24% 91% 

Requests 
Handled by 
GRUBER  10 67% 37641 2405 0.063 33% 80% 

1 60% 13009 0 0.000 2% - 
3 47% 23507 993 0.042 27% - 

Requests 
NOT 
Handled by 
GRUBER  

10 33% 18391 2080 0.113 23% - 

1 100% 21682 256 0.513 5% 84% 
3 100% 50993 5727 0.233 51% 63% 

 
All Requests 

10 100% 56032 7126 0.269 56% 60% 
  

If we consider only jobs that were scheduled 
through one of the DI-GRUBER decision points, the 
results look rather different. There are four notable 
differences when comparing the performance between 
the requests handled and those that were not handled 
by DI-GRUBER; 1) Accuracy shows significant 
improvement; 2) higher Resource Utilization when 



 

taking into consideration the percentage of requests 
handled by DI-GRUBER; 3) QTime is better; and 4) 
Normalized QTime (defined as the ratio between 
QTime and the total number of requests) is noticeably 
improved.  

Note that the scenario with only one decision point 
has a small QTime; this is due to the fact that within 
the one hour the test was performed, the number of 
requests made was smaller than in the other cases due 
to lower throughput, so practically the number of jobs 
entering the grid was smaller in comparison with 
available resources (an expected behavior). With fewer 
resources being used, it was easier for the decision 
point to make good decisions, and hence the small 
QTime. We computed Normalized QTime in order to 
take into account both the number of requests and the 
resource utilization; we see that the deceivingly low 
QTime for the one decision point scenario now shows 
its worse performance when compared to the other two 
scenarios. (The low utilization also makes this clear.) 

3.4.3. Accuracy with Synchronization  

The other important dimension in our analysis is the 
interval at which decision points perform 
synchronization. We performed several tests using 
DiPerF, where the decision points were exchanging 
status information at predefined time intervals, namely 1, 
3, 10, and 30 minute intervals. Figure 8 shows our 
results, in this case just for jobs handled by DI-
GRUBER. We see that for the workloads considered, a 
three minute exchange interval is sufficient to achieve 
95% Accuracy.  
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Figure 8: GT3 DI-GRUBER Scheduling 

Accuracy as Function of the Exchange Time 
Interval for Three Points 

3.5.  Results with GT4.0 

We ported the DI-GRUBER implementation from 
GT3 to the GT3.9.5 prerelease of GT4. (This release is 
functionality equivalent to the final GT4.0 release, but 

provides somewhat lower performance than GT4.0, 
which is significantly faster than GT3.) GT4 is 
implemented quite differently from GT3, and thus 
experiments with this “GT4 DI-GRUBER” provide a 
means for further exploration of various parameters 
and behaviors based on infrastructure performance. We 
consider that it is like comparing two different resource 
brokers built for similar purposes but based on 
different technologies.  

3.5.1. Infrastructure Scalability  

Using DiPerF, we varied slowly the number of 
clients for this set of tests. Figures 9-11 below present 
as before Response, Throughput, and Load for 1, 3, 
and 10 decision points. 

For one decision point (Figure 9) we see a steadily 
increasing service response time as the number of 
concurrent machines increases; during the peak period, 
the average service Response time was about 84 
seconds. Throughput increases rapidly, but after about 
10 concurrent clients, plateaus just above 1 query per 
second; the throughput remains relatively constant at 
about 1.3 queries per second even when all testing 
machines (close to 120 in this case) are accessing the 
service in parallel.  
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Figure 9: GT4 Centralized Scheduling  
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Figure 10: GT4 DI-GRUBER with Three 

Decision Points 

With three decision points (Figure 10), 
Throughput increases slowly to about 4 job 
scheduling requests per second when all testing 
machines are accessing the service in parallel. The 
service Response time is also smaller (about 26 
seconds) on average compared with the previous 
results (about 84 seconds).  

With 10 decision points (Figure 11), the average 
service Response time decreased even further to about 
13 seconds, and the achieved Throughput reached 
about 7.5 queries per second during the peak load 
period. The distributed service provides a symmetrical 
behavior with the number of concurrent machines 
independent of the state of the grid (lightly or heavily 
loaded). This result verifies the intuition that for a 
certain grid configuration size, there is an appropriate 
number of decision points that can serve the scheduling 
purposes under an appropriate performance constraint. 
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Figure 11: GT4 DI-GRUBER with 10 

Decision Points 

Overall, Throughput and Response improve by a 
factor of three when the number of decision points is 
increased from one to three, and by a factor of five 

when using five decision points. Again, practically, we 
see that for GT4 DI-GRUBER, three decision points 
are sufficient when around 120 clients are scheduling 
jobs. This result is confirmed analytically in Section 4.  

3.5.2. Accuracy and Scheduling Performance  

Next, we analyze the performance of the GT4 DI-
GRUBER and its strategies for providing accurate 
scheduling decisions as in the GT3 case. Again, we 
look from both an infrastructure complexity and 
synchronization interval point of view. 

Table 2 depicts the overall performance of GT4 DI-
GRUBER in the scenarios introduced before. Again, 
the values under the “All Requests” section provide an 
overall view of the implementation’s performance, but 
do not reflect actual performance.  

Table 2: GT4 DI-GRUBER Overall Performance 
 Decision 

Points 
% of 
Req 

# of 
Req 

QTime Norm 
QTime 

Util Accuracy 

1 53% 3852 0 0.000 3% 98% 
3 92% 24048 452 0.018 16% 90% 

Requests 
Handled by 
GRUBER  10 93% 37593 2501 0.066 35% 75% 

1 47% 3382 0 0.000 7% - 
3 8% 1893 36 0.019 4% - 

Requests 
NOT 
Handled by 
GRUBER  

10 7% 2567 220 0.085 6% - 

1 100% 7234 0 0.000 10% 94% 
3 100% 25941 660 0.025 20% 81% 

 
All Requests 

10 100% 40160 3017 0.075 41% 68% 
  

 

If we consider only jobs that were scheduled 
through a single DI-GRUBER decision point, the 
results do not look that different, except for the one-
decision point case. The explanation is that in the three 
and ten decision point cases, GT4 DI-GRUBER was 
able to handle almost all requests successfully, which 
is different from the GT3 DI-GRUBER.  

3.5.3. Accuracy with Synchronization  

Using DiPerF, we performed several tests where 
the decision points were exchanging status information 
at the same predefined time intervals (1, 3, 10, and 30 
minutes). The results in Figure 12 show that in the 
GT4 case, for a three decision point infrastructure a 
three to ten minutes exchange interval is sufficient for 
achieving almost 90% Accuracy. This value depends 
also on the number of the jobs scheduled by the 
decision points.  
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Figure 12: GT4 DI-GRUBER Scheduling 

Accuracy as Function of Exchange Time 
Interval for Three Decision Points 

4. Infrastructure Dynamic Evaluation  

While the above results are encouraging and 
meaningful for the settings we performed, one can 
reasonably argue that the appropriate number of 
decision points needed may depend on the dynamics, 
performance, and state of a particular grid.  

Thus, we next focus on extracting meaningful 
elements that DI-GRUBER decision points can use to 
provide dynamic information (such as maximum load) 
that can be used to determine whether or not the 
saturation point was reached.  

4.1.  Evaluation Criteria  

Saturation identification: The first element we 
want to identify is when the DI-GRUBER decision 
points get saturated. We use performance models 
created by DiPerF to establish an upper bound on the 
number of transactions that a decision point can handle 
per time interval. When this upper bound is reached, a 
decision point can trigger a “saturation” signal to a 
third party monitoring service responsible for handling 
these events.  

Overall decision points needed per decision point 
set: Having information from each individual decision 
points about their state, a third party observer can 
decide dynamically what steps should be taken to 
reconfigure the scheduling infrastructure, for example 
by adding decision points or by rebalancing load 
among existing decisions points to avoid overloading.  

In order to validate the proposed enhancements, we 
have developed a simple simulator (GRUB-SIM) 
capable of simulating DI-GRUBER decision points. 
We were interested in providing a simple means for 
dynamic identification of the number of required DI-
GRUBER decision points starting from the logs we 
collected in the previous chapters. In essence, GRUB-
SIM took the traces from the tests presented in the 
previous section, and attempted to identify the 

saturation points and the optimum number of decision 
points needed.  

4.2.  GRUB-SIM Results  

GRUB-SIM automatically traces the Response 
metric and all overloads events, and simulates new 
decision points on the fly. The results are gathered in 
Table 3 and they provide the number of decision points 
required in each situation for achieving an adequate 
Response from DI-GRUBER. We see that for the 
GT3-based implementation, a total of 4 decision points 
was necessary. On the other hand, for the GT4 DI-
GRUBER, a total of 5 decision points were needed.    

Table 3: Required Decision Points 
Additional Decision Points Decision Points GT3-based GT4-based 

1 3 4 
3 1 2 
10 0 0 

  
While these results are encouraging, we do not have 

a DI-GRUBER implementation for such an approach. 
We hope to produce such an implementation in future 
work. However, these results strengthen our claim that 
only a few decision points, namely about 4 or 5, are 
enough to handle the scheduling for a grid that is 10 
times larger than today’s Grid3.  

5. Related Work  

A policy based scheduling framework for grid-
enabled resource allocations is under development at 
the University of Florida [22]. This framework 
provides scheduling strategies that (a) control the 
request assignment to grid resources by adjusting 
resource usage accounts or request priorities; (b) 
manage efficiently resources assigning usage quotas to 
intended users; and (c) supports reservation based grid 
resource allocation. One important difference of DI-
GRUBER is the lack of an assumption of a centralized 
scheduling point.  

The Grid Service Broker, a part of the GridBus 
Project, mediates access to distributed resources by (a) 
discovering suitable data sources for a given analysis 
scenario, (b) suitable computational resources, (c) 
optimally mapping analysis jobs to resources, (d) 
deploying and monitoring job execution on selected 
resources, (e) accessing data from local or remote data 
source during job execution, and (f) collating and 
presenting results. The broker supports a declarative 
and dynamic parametric programming model for 
creating grid applications [23]. An important difference 
is that GridBus does not support the notions of sites, 
submission hosts, and virtual organizations or groups.  



 

Cremona is a project developed at IBM as a part of 
the ETTK framework [9]. It is an implementation of 
the WS-Agreement specification and its architecture 
separates multiple layers of agreement management, 
orthogonal to the agreement management functions: 
the Agreement Protocol Role Management, the 
Agreement Service Role Management, and the 
Strategic Agreement Management. Cremona focuses 
on advance reservations, automated SLA negotiation 
and verification, as well as advanced agreement 
management. DI-GRUBER instead targets a different 
environment model, in which the main players are VO 
and resource providers with opportunistic needs (free 
resources are acquired when available).  

6. Conclusions and Future Work 

Managing USLAs within large virtual organizations 
that integrate participants and resources spanning 
multiple physical institutions is a challenging problem. 
Maintaining a single unified decision point for USLA 
management is a problem that arises when many users 
and sites need to be managed. We provide a solution, 
namely DI-GRUBER, to address the question on how 
SLAs can be stored, retrieved and disseminated 
efficiently in a large distributed environment. The key 
question this paper addresses is the scalability and 
performance of scheduling infrastructures, DI-
GRUBER in our case, in large Grid environments.  

The contributions of this paper are the results we 
achieved on two dimensions: how well our proposed 
solution performed in practice (three to ten decision 
points prove to be enough to handle a grid ten times 
larger than today’s Grid3/OSG [18], with four to five 
decision points being sufficient as refined by GRUB-
SIM) and a methodology to measure the success of 
such a meta-scheduler (performance metrics). We also 
introduced two enhancements to our previous 
GRUBER framework, namely the distributed approach 
in resource scheduling and USLA management, and an 
approach for dynamic computing the number of 
decision points for various grid settings.  

We note that DI-GRUBER is a complex service: a 
query to a decision point may include multiple 
message exchanges between the submitting client and 
the decision point, and multiple message exchanges 
between the decision points and the job manager in the 
grid environment. In a WAN environment with 
message latencies in the 100s of milliseconds, a single 
query can easily take multiple of seconds to serve. We 
expect that performance will be significantly better in a 
LAN environment. However, one of DI-GRUBER’s 
design goals was to offer resource brokering in a WAN 
environment such as grids.  

While the transaction rate for the DI-GRUBER 
service is fairly low compared to other transaction 
processing systems [2,3,4], this rate proved to be 
sufficient in the Grid3 context [25]; furthermore, these 
other transaction processing systems were designed to 
be deployed in a LAN environment. Also, the 
transaction speed increases linearly with the number of 
decision points deployed over a grid. DI-GRUBER 
performance can be improved further by porting it to a 
C-based Web services core, such as is supported in 
GT4 [29]. The performance of DI-GRUBER could also 
be enhanced further simply by deploying it in a 
different environment that would have a tighter 
coupling between the resource broker (DI-GRUBER) 
and the job manager (Euryale); this approach would 
reduce the complexity of the communication from two 
layers to one layer. 

We note that DI-GRUBER scaled almost linearly 
as we tested its performance with 1, 3, and 10 decision 
points respectively. The graphs (from Sections 3.4 and 
3.5) that involve multiple decision points (especially 
with 10), it was expected to have a two-fold increase in 
clients with only one-fold increase in response time. 
For the graphs with only one decision point, the two-
fold increase in clients resulted in roughly a two-fold 
increase in response time.   

Also, by increasing the number of decision points 
(cooperating brokers that communicate via a flooding 
protocol) the throughput climbs to approximately 70 
transactions/second with a low response time. This 
observation leads us to conclude that the required 
number of “decision” nodes to ensure scalability in a 
two-layer scheduling system like DI-GRUBER is 
relatively small. 

There are certain issues that we did not address in 
this paper. For instance, our analysis did not consider 
certain different methods of information dissemination 
among decision points. Furthermore, validating our 
results would involve performing these tests on a larger 
real grid than exists today.  
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