
Experiences in Running Workloads over Grid3

Catalin L. Dumitrescu1, Ioan Raicu1, and Ian Foster1,2

1 Computer Science Department, The University of Chicago,
5801 S. Ellis Ave., Chicago, IL, 60637

cldumitr@cs.uchicago.edu
2 Mathematics and Computer Science Division, Argonne National Laboratory,

9700 S. Cass Ave., MCS/221, Argonne, IL, 60439
foster@mcs.anl.gov

Abstract. Running workloads in a grid environment is often a challenging
problem due the scale of the environment, and to the resource partitioning based
on various sharing strategies. A resource may be taken down during a job
execution, be improperly setup or just fail job execution. Such elements have to
be taken in account whenever targeting a grid environment for execution. In this
paper we explore these issues on a real grid, Grid3, by means of a specific
workload, the BLAST workload, and a specific scheduling framework,
GRUBER - an architecture and toolkit for resource usage service level
agreement (SLA) specification and enforcement. The paper provides extensive
experimental results. We address in high detail the performance of different site
selection strategies of GRUBER and the overall performance in scheduling
workloads in Grid3 with workload sizes ranging from 10 to 10,000 jobs.

1 Introduction

Grid3 represents a multi-virtual organization that sustains production level
services required by various physics experiments. The infrastructure is composed of
more than 30 sites and 4500 CPUs, over 1300 simultaneous jobs and more than
2TB/day. The participating sites are the main resource providers under various
conditions. We consider in this paper that all these sites are governed by various usage
SLAs [3]. We distinguish here between “resource usage policies” (or SLAs) and
“resource access policies.” Resource access policies typically enforce authorization
rules. In contrast, resource usage SLAs govern the sharing of specific resources
among multiple groups of users. Once a user is permitted to access a resource via a
resource access policy, then the resource usage policy steps in to govern how much of
the resource the user is permitted to consume. GRUBER focuses on computing
resources such as computers, storage, and networks; owners may be either individual
scientists or sites; and VOs are collaborative groups, such as scientific collaborations.

In this paper, we focus on the problems that can occur in Grid3, because various
elements affect workload execution times. We measure the impact by means of
average resource utilization, average response time, average job completion, average
job re-planning (Replan), workload completion time (Time), and job completion gain

2 Catalin L. Dumitrescu, Ioan Raicu and Ian Foster

(Speedup) [1]. We present our detailed results for scheduling BLAST workloads over
one of the largest US grid, the Grid3 [3] environment.

2 Goals

Running various size workloads over Grid3 can become a challenging problem
when resources are shared by a large user community. For most environments, even
short periods of overloading can decrease the performance the users get from the
system. In any grid context, such overloading scenarios can be only partial as a grid is
a large composition of resources spread in various administrative domains. Here we
try to identify some of the main challenges users may face when submitting
workloads in such environments and to provide also some simple means for
improving their achieved performance. We assume in our scenario that various sites
are used at particular times and we are interested in measure how well the overall
performance maintains over larger time intervals.

2.1 Resource Providers and Consumers

Grid3 is composed of resources provided based on various usage SLA [1],[17].
Further, resources are aggregated at the VO level and provided on similar usage SLA
means to groups and users. Our usage SLA scheduling framework, GRUBER, deals
with two classes of entities: resource providers and resource consumers. A physical
site is a resource provider; a VO is a consumer (consuming resources provided by a
site) and a provider (providing resources to users, groups or workload types). We
assume that each provider-consumer relationship is governed by an appropriate SLA.

2.2 Usage SLA-based Resource Sharing

The entire grid environment is described as follows:
• A grid consists of a set of resource provider sites and a set of submit hosts.
• Each site contains a number of processors and some amount of disk space.
• A three-level hierarchy of users, groups, and VOs is defined, such that, each user

is a member of one group, and each group is a member of one VO.
• Users submit jobs for execution at submit hosts. A job is specified by four

attributes: VO, Group, Required-Processor-Time, Required-Disk-space.
• A site policy statement defines site usage SLAs by specifying the number of

processors and amount of disk space that the site makes available to each VOs.
• A VO policy statement defines VO usage SLAs by specifying the fraction of the

VO’s total processor and disk resources (i.e., the aggregate of contributions to
that VO from all sites) that the VO makes available to different groups.

We note that this model is one of resource sub-allocation: resources are owned by
sites, which apportion them to VOs. VOs in turn apportion their “virtual” resources to
groups. Groups could, conceptually, apportion their sub-allocation further, among
specific users. Without loss of generality, we simplify both this discussion and our
implementation by sub-allocating no further than from VOs to groups.

Experiences in Running Workloads over Grid3 3

3 Environment Settings

The execution environment is based on the VDS toolkit developed in the GriPhyN
project context. The specific technicalities are as follows.

3.1 Euryale as Concrete Planner

Euryale [9] is a complex system aimed at running jobs over a grid, and in special
over Grid3 [3]. The approach used by Euryale is to rely on the Condor-G capabilities
to submit and monitor jobs at sites. It takes a late binding approach in assigning such
jobs to sites. In addition, Euryale allows a simple mechanism for fault tolerance by
means of job re-planning when a failure is discovered.

During a workload execution, DagMan executes the Euryale’s pre- and post-
scripts, the heart of Euryale concrete planner, which also contain the Euryale’s
execution logic. The prescript calls out to the external site selector, rewrites the job
submit file, transfers necessary input files to that site, registers transferred files with
the replica mechanism, and deals with re-planning. The postscript file transfers
output files to the collection area, registers produced files, checks on successful job
execution, and updates file popularity. To run things in the grid, Euryale needs
knowledge about the available resources, or sites. An important feature of Euryale is
its capacity to invoke external site selectors in job scheduling, such as our resource
broker, GRUBER [18].

3.2 GRUBER as Resource Broker

GRUBER is the main component that we used for the site selection. It is
composed of four principal components, as we now outline [18]. The GRUBER
engine represents the main component of the architecture. It implements various
algorithms for detecting available resources and maintains a generic view of resource
allocations and utilizations.

Fig. 1: GRUBER Architecture

The GRUBER site monitoring component is one of the data providers for the
GRUBER engine. This component is optional and can be replaced with various other

4 Catalin L. Dumitrescu, Ioan Raicu and Ian Foster

grid monitoring components that will provide similar information, such as MonaLisa
[10] or Grid Catalog [3]. So far, we are unaware of any complete replacement.
GRUBER site selectors are tools that communicate with the GRUBER engine and
provide answers to the question: “which is the best site at which I can run this job?”.
Site selectors can implement various task assignment policies, such as random
assignment (G-RA), round robin (G-RR), least used (G-LU), or last recently used (G-
LRU) task assignment policies. We note that one can use just the GRUBER engine
and site selectors, without the GRUBER queue manager. This option makes
GRUBER only a site recommender, without having the capacity to enforce any usage
SLA expressed at the VO level, while enforcing the usage SLA at the site level by
means of removing a site for an already over-quota VO user at that site.

3.3 Disk Space Considerations

Disk space management introduces additional complexities in comparison to job
management [18]. For the experiments in this paper, we have extended GRUBER to
deal with multiple resource issues and describe here in more detail our work. If an
entitled-to-resources job becomes available, it is usually possible to delay scheduling
other jobs, or to preempt them if they are already running. In contrast, a file that has
been staged to a site cannot be “delayed,” it can only be deleted. Yet deleting a file
that has been staged for a job can result in livelock, if a job’s files are repeatedly
deleted before the job runs. As a consequence, a different approach has been devised.
As a concrete example, a site can become heavily loaded with a one VO jobs and
because of which other jobs are either in the local queue in an idle state waiting for
their turn. But this does not stop the submission of more jobs. As a result, there may
be lots of other input data on the site and the disk used space will keep on growing.
On the other hand, the other jobs are not getting their turn to actually finish and delete
their files. The rate of input data being copied over to the site is higher than the rate of
completion of jobs, making the disk space to get full.

So far, we have considered a UNIX quota-like approach. Usually, quotas just
prevent one user on a static basis from using more than his hard limit. There is no
adaptation to make efficient use of disk in the way a site CPU resource manager
adapts to make efficient use of CPU (by implementing more advanced disk space
management techniques). More precisely, for scheduling decisions a list of site
candidates that are available for use by a VO i for a job with disk requirements J, in
terms of provided disk space, is built by executing the following logic.

1. for each site s in site list G do
2. # Case 1: over-used site by VOi
3. if IAi > IPi for VO i at site s
4. next
5. # Case 2: un-allocated site
6. else
7. if Σk(IAk) < s.TOTAL - J &&
 IAi + J < IPi then
8. add (s, S)
9. return S

Experiences in Running Workloads over Grid3 5

with the following definitions:

S = Site Set
k = index for any VO != VOi
IPi = Instantaneous Usage SLA for VOi
IAi = Instantaneous Resource Usage for VOi
TOTAL = upper limit allocation on the site

The set of disk-available site candidates is combined with the set of CPU-available
site candidates and the intersection of the two sets is used for further scheduling
decisions.

4 Experimental Results

We first introduce the metrics [18] that we used to evaluate the alternative
strategies, and then introduce our experimental environment, and finally present and
discuss our results.

4.1 Metrics

We use five metrics to evaluate the effectiveness of workload performance
execution.

• Comp: the percentage of jobs that complete successfully.

Comp = (Completed Jobs) / #jobs * 100.00

• Replan: the number of performed replanning operations.

• Util: average resource utilization, the ratio of the per-job CPU resources
consumed (ETi) to the total CPU resources available as a percentage:

Util = Σ i=1..N ETi / (#cpus * ∆t) * 100.00

• Delay: average time per job (DTi) that elapses from when the job arrives in a
resource provider queue until it starts:

Delay = Σi=1..N DTi / #jobs

• Time: the total execution time for the workload.

• Speedup: the serial execution time to the grid execution time for a workload.

• Spdup75: the serial execution time to the grid execution time for 75% of the
workload.

All metrics are important: an adequate environment will both maximize delivered
resources and meet owner intents. For example, Table 1 presents a simple case
scenario in which several VOs have various SLAs, resource requests, and resource
utilizations at a particular resource provider. The column names have the following
meanings:

6 Catalin L. Dumitrescu, Ioan Raicu and Ian Foster

• Target: the usage SLA for the consumer at the resource provider, as a percentage
of site capacity.

• Current: the current utilization for the consumer at the provider, as a percentage.
• Demand: the current resource demand from the consumer for the provider, as a

percentage (it cannot be less than Current).
• Level: how our criteria is met (OK when Current = MIN (Target, Demand)).

Table 1. Usage SLAs in our Scenario
VO Target Current Demand Level

USCMS 60 50 50 OK
USATLAS 20 15 30 Under

IVDGL 10 10 100 OK
LIGO 5 3 3 OK
SDSS 5 22 50 Over

4.2 Experiment Settings

We used a single job type in all our experiments, the sequence analysis program
BLAST. A single BLAST job has an execution time of about 40 minutes (the exact
duration depends on the CPU), reads about 10-33 kilobytes of input, and generates
about 0.7-1.5 megabytes of output: i.e., an insignificant amount of I/O. We used these
BLAST workloads in three different sets of workload configuration: (1) small
workloads of 10, 50, and 100 jobs that get scheduled at once; (2) medium workloads
of 500 to 1000 jobs that are submitted in several steps in order to honor the VO usage
SLAs; and (3) large workloads of 10k jobs.

Table 2. Grid3 CPU Allocations on July 9, 2004
VO Allocations (in %) Site Name # of

CPUs iVDGL Atlas USCMS
T2cms0.sdsc.edu 76 0.62 24.74 0.40
nest.phys.uwm.edu 305 0.00 7.28 0.00
uscmsb0.ucsd.edu 3 11.68 11.68 11.68
xena.hamptonu.edu 1 25.00 25.00 25.00
garlic.hep.wisc.edu 101 3.01 3.01 3.01

We performed all experiments on Grid3, which comprises around 30 sites across
the U.S., of which we used 15. Each site is autonomous and managed by different
local resource managers, such as Condor, PBS, or LSF. Each site enforces different
usage policies which are collected by the GRUBER site monitor. For example, Table
1 gives CPU allocations per VO on five Grid3 sites on July 9, 2004 as collected
through the GRUBER site monitor. We submitted all jobs within the iVDGL VO,
under a VO usage policy that allows a maximum of 600 CPUs. Furthermore, we
submitted each individual workload under a separate iVDGL group, with the
constraint than no one group can get more than 25% of iVDGL CPUs, i.e., 150.

We also configured GRUBER to employ a replanning policy, by which a starving
job was removed after a predefined time interval (20 minutes here) and resubmitted
for rescheduling. If a job was submitted unsuccessfully 10 times or it was reported as

Experiences in Running Workloads over Grid3 7

application level “failure” by a site, then it is considered a failure. All submissions
were performed without withholding or setting any special priorities at sites,
practically GRUBER had to find resources while all workloads ran in parallel. The
VO usage SLA limited the submitting group to approximately 150 jobs at a time.

Regarding the site selectors, they were already introduced by Dumitrescu et al.
[18] and used in a similar fashion. In a nutshell, G-RA represents GRUBER random
assignment site strategy, G-RR represents GRUBER round robin site strategy, G-LU
represents GRUBER least used site assignment strategy, and G-LRU represents least
recently used site strategy [18].

4.3 Small Workload Results

Table 3 shows the results for the 1x10 jobs workloads. In the ideal case, these
values are: Comp=100, Replan=0, Util=1.25, Delay=0, Time=3000, and Speedup=10.
As can be seen, the speedup is 2.5 to 3.5 times smaller due to the probability of a jobs
ending on sites with a local resource manager that do not behave as expected. The job
starvation was “detected” after a time interval comparable with the execution time (20
minutes vs. 40 minutes). However, 75% of the jobs do complete in a time interval
closer to the ideal case of a speedup of 10.

Table 3. Results and 90% Confidence Intervals of Four Policies for 1x10 workloads
 G-RA G-RR G-LU G-LRU

Comp(%) 100 100 100 100
Replan 34.1 ± 5.51 47.5 ± 9.26 8.6 ± 1.83 13.6 ± 2.18

Util (%) 0.36 ± 0.05 0.31 ± 0.07 0.55± 0.10 0.50 ± 0.04
Delay (s) 3262 ± 548 4351 ± 824 1162 ± 376 801 ± 313
Time (s) 12436 ± 1191.4 13966 ± 2208.8 8787±158 7653 ± 205.9
Speedup 2.33 ± 0.25 2.21 ± 0.35 3.6 ± 0.6 3.46 ± 0.45
Spdup75 3.72 ± 0.59 3.46 ± 0.51 5.32± 0.67 5.66 ± 0.55

Table 4 shows the results for the 1x50 jobs workloads. In the ideal case, these
values are: Comp=100, Replan=0, Util=6.25, Delay=0, Time=3000, and Speedup=50.
The same situation as before was encountered in this set of experiments: several jobs
starved and their execution time affected the overall speedup. The speedup of 75% of
the jobs instead is more than the half of the ideal speedup, proving that most of the
jobs do complete close to the optimal time.

Table 4. Results and 90% Confidence Intervals of Four Policies for 1x50 workloads
 G-RA G-RR G-LU G-LRU

Comp(%) 100 100 100 100
Replan 35 ± 14 51.1 ± 28 48.8 ±10.8 78.8 ± 9.51

Util (%) 1.18 ± 0.25 1.44 ± 0.27 1.89 ±0.43 1.76 ± 0.18
Delay (s) 1420 ± 713 583 ± 140.4 653.8 ±202 1260 ± 528.7
Time (s) 8035 ± 990.4 9654 ± 603.5 8549 ±898 9702 ± 1247.3
Speedup 16.35 ± 1.17 14.12 ± 0.90 15.16 ±2.42 12.76 ± 0.71
Spdup75 30.84 ± 5.70 35.36 ± 2.79 35.41 ±2.48 24.36 ± 2.28

8 Catalin L. Dumitrescu, Ioan Raicu and Ian Foster

Table 5 shows the results for the 1x100 jobs workloads. In the ideal case, these
values are: Comp=100, Replan=0, Util=12.50, Delay=0, Time=3000, and
Speedup=100. Again, similarly to the 1x50 workloads, the execution performance is
half for 75% of the workloads and drops for the entire workload.

Table 5. Results and 90% Confidence Intervals of Four Policies for 1x100 workloads
 G-RA G-RR G-LU G-LRU

Comp(%) 100 100 100 100
Replan 228.7 ± 21 39.9 ± 13.8 124.7 ± 17 230 ± 20.3

Util (%) 2.86 ± 0.30 3.48 ± 0.59 3.51 ± 0.7 1.87 ± 0.46
Delay (s) 1691 ± 198 529 ± 92.67 640 ± 93.4 1244 ± 387.9
Time (s) 10350 ± 565.9 9013 ± 1025.1 9716±1130 7507 ± 2325.1
Speedup 22.43 ± 1.55 30.15 ± 3.43 28.02 ± 5.4 19.24 ± 1.56
Spdup75 47.38 ± 3.24 77.19 ± 3.26 73.54 ± 2.0 35.86 ± 3.72

4.4 Medium Workload Results

Table 6 shows the results for the 1x500 jobs workloads. Here, in the ideal case, the
values are: Comp=100, Replan=0, Util=25.00, Delay=3600, Time=3000, and
Speedup=150. The size of the workloads makes the execution performance to
increase, and practically almost match the ideal speedup for the 75% of the workload
and be only half for the overall workload.

Table 6. Results and 90% Confidence Intervals of Four Policies for 1x500 workloads
 G-RA G-RR G-LU G-LRU

Comp(%) 100 100 100 100
Replan 925 ± 103.5 816 ± 245.6 680 ± 139.3 1024 ± 154.2

Util (%) 34.04 ± 4.55 33.19 ± 2.39 30.3 ± 4.7 25.41 ± 5.6
Delay (s) 9202 ± 1716.8 6700 ± 816.6 6169 ± 407 9125 ± 6117.8
Time (s) 28116 ± 2881 24225 ± 035.9 21362 ±1250 20434 ± 4100
Speedup 67.32 ± 5.6 60.22 ± 3.26 63.12 ±3.41 51.77 ± 5.94
Spdup75 98.43 ± 8.7 111.69 ± 9.81 113.2 ±8.82 101.48 ± 10.05

4.5 Large Workload Results

Next, we report on previous results were we used a more aggressive scheduling
approach. In this approach, the number of retries was limited to five versus ten job
retries. Also, in these measurements some of the sites were not properly configured
and jobs failed immediately. These workloads provide also insights about GRUBER’s
scalability. Our results are captured in Table 7. Round-robin and random-assignment
prove to achieve the best performance. The lower completion rates are explained by
the number of low number of retries (5) and the missing of BLAST environment
configuration at a few sites. All these factors are also an explanation for the lower
performance achieved in these cases.

Experiences in Running Workloads over Grid3 9

Table 7. Results of Four GRUBER Strategies for 1x1k workloads

 G-RA G-RR G-LU G-LRU
Comp(%) 97 96.7 99.3 85.6

Replan 1396 1679 1326 1440
Util (%) 12.85 12.28 14.56 10.63
Delay (s) 49.07 53.75 50.50 54.69
Time (s) 29484 37620 33300 80028
Speedup 140.3+ 113.1+ 122+ 101.4+
Spdup75 173.5 159.3 161.4 127.8

Further, in the 10k workloads, the completion rates drop even more, as the
probability of failures increases linearly with the number of jobs (GRUBER maintains
a constant load on the available sites).

Table 8. Results of Four GRUBER Strategies for 1x10K workloads
 G-RA G-RR G-LU G-LRU
Comp(%) 91.75 91.88 77.88 73.58

Replan 18000 23900 27718 24350
Util (%) 24.3 23.3 20.0 17.6
Delay (s) 86.63 85.17 89.01 90.45
Time (s) 226k 260k 295k 349k
Speedup 137+ 145.4+ 134+ 98.3+
Spdup75 156.2 163 139.6 98.3+

The results in Table 9 are the means across the four submitters. We see some
interesting differences from Table 7. G-LU’s completion rate drops precipitously,
presumably for some reason relating to greater contention. The total execution times
for G-RA and G-LU increase, although more runs are required to determine the
significance of these results.

Table 9. Results of Four GRUBER Strategies for 4x1K workloads
 G-RA G-RR G-LU G-LRU
Comp(%) 98.2 98.7 91.7 87.9

Replan 1815 1789 2409 1421
Util (%) 13.51 14.02 11.52 11.05
Delay (s) 66.62 64.41 63.96 68.97
Time (s) 40356 37800 48564 48636
Speedup 77.3+ 74.1+ 71+ 60+
Spdup75 105.6 102.9 93.8 82.4

4.6 Failure Analysis

While for the small and medium workloads the number of failures was null, for
large workloads the completion rates vary as can be observed from the tables in

+ Results for incomplete workloads.

10 Catalin L. Dumitrescu, Ioan Raicu and Ian Foster

subsection 0. The motivations for these failures are in most cases the small number of
retries used during these tests (5 instead of 10), the temporary failure of the RLS
server used to stage in and out data (overloading issues), in a few cases due to
DagMan failure in managing jobs (application bugs), and gatekeepers overloading.
Most of these errors were reported and fixes were performed or are expected in the
future for the signaled problems.

Also, we have to note that Grid3 performance in executing BLAST workloads has
already increased between the first set of experiments (large workloads) and the
second ones (small and medium workloads). Either individual sites had undergone
hardware upgrades or the job assignment policies to individual computing nodes
became more job requirements aware (avoiding node overloads).

5 Statistical Analysis

While previous results provide useful insight about how Grid3 performs in
executing workloads when GRUBER is the steering mechanism, further analysis is
required to identify how the scheduling strategies have performed comparatively. Fig.
2 presents the speedup performance over all runs and the confidence intervals at 90%.
Note the small confidence intervals for all runs, which express low standard deviation
and the strength of our results across the runs and configurations.

0

10

20

30

40

50

60

70

80

G-RA G-RR G-LU G-LRU

1x10

1x50

1x100
1x500

Fig. 2. Speedup Comparisons among Workloads

Further, we use the T-test to correlate the results of these experiments. The T-test
is usually used for comparing the results of two alternative approaches with the claim
that the results are significantly different. For comparison means, we use tournament
trees and T-tests as comparison operator. These results are captured in Table 10. The
null hypothesis and alternative hypothesis that we set up to conduct the t-test are:
• H0 (null hypothesis): any given two runs have comparable performance;
• Ha (alt. hypothesis): prove H0 is false; two runs do not have same performance.

The null hypothesis is the one that we want to reject as not being true, while the
alternative hypothesis is the one that we want to accept as being true. Our alternative
hypothesis is two sided since we test that the runs are just different, which implies
either < or >; we essentially test 2 * P (t > critical_value) to be less than 0.05. The
goal is to obtain a probability that the t value will be greater or less than the critical

Experiences in Running Workloads over Grid3 11

value. The p value needs to be less than 0.05 for the results to be statistically
significant, which implies that Ha is true with 95% confidence for the corresponding
comparisons; the lower the p value, the better the confidence. If a p value cannot be
found that is less than 0.05, then the sample space is not statistically significant, and
hence more samples must be obtained.

Table 10. Tournament Tree (T-tests) Results
 G-RA vs. G-RR G-LU vs. G-LRU G-RA vs. G-LU

1x10 0.09 (?) 0.17 (?) 0.0005 (T)
1x50 0.0005 (T) 0.0005 (T) 0.0005 (T)

1x100 0.0005 (T) 0.0005 (T) 0.0005 (T)
1x500 0.0005 (T) 0.0005 (T) 0.0005 (T)

The results from Table 10 show that for all workloads other than the smallest one,
the results are statistically significant with at least a 99.95% confidence. Regarding
the smallest workload of 1x10 (for which we had 10 sample runs), the number of
samples in our experiment do not seem to be enough, and hence more experiments
would have to be performed for the 1x10 workload.

6 Related Work

There are several other production workloads running over Grid3, such as the
QuarkNet Project, SDSSCoAdd, GADU, or fMRIDC. While these workloads are
important from the GriPhyN project point of view, they offer little elements for
comparisons with the work described here. Firstly, these workloads are run mostly for
their results and not for measuring various Grid3 execution capacities. The closest one
is the SDSS/CoAdd workload in scope; however we do not have information to date
about various metrics [20]. Besides the iVDGL workloads running over Grid3, there
are other challenge problems solved. For example, the ATLAS “VO” and applications
focus on Monte Carlo simulation of the physics processes that will occur in high
energy proton collision at LHC; SDSS runs various problems related to galaxy
clusters identification or pixel-level analysis of astronomical data, etc. [3].

7 Conclusions

Running workloads in grid environments is often a challenging problem due the
scale of the environment and to the resource participation based on various sharing
strategies. A resource may be taken down during job execution, be improperly setup
or just fail job execution. Such elements have to be taken in account when targeting a
grid environment.

In this paper we explored some of the issues that occur on a real grid, namely
Grid3, by means of a specific workload, the BLAST workload, and a specific
scheduling framework, GRUBER - an architecture and toolkit for resource usage
service level agreement (SLA) specification and enforcement. During these
experiments we faced various problems as described above, as well as quantified what
performance a grid user should expect. In addition, we observed for our brokering

12 Catalin L. Dumitrescu, Ioan Raicu and Ian Foster

mechanism that for medium workloads, G-RA performs best with a 90% confidence
interval, while G-LU performed best for smaller workloads. We also note that G-LRU
performed worst for all tested workloads.

References

1. Dumitrescu, C. and I. Foster, "Usage Policy-based CPU Sharing in Virtual Organizations",
in 5th International Workshop in Grid Computing, 2004.

2. Foster, I., C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling Scalable
Virtual Organizations", in International Journal of Supercomputer Applications, 2001.

3. Foster, I., et al., "The Grid2003 Production Grid: Principles and Practice", in 13th
International Symposium on High Performance Distributed Computing, 2004.

4. Dan, A., C. Dumitrescu, and M. Ripeanu, "Connecting Client Objectives with Resource
Capabilities: An Essential Component for Grid Service Management Infrastructures", in
ACM International Conference on Service Oriented Computing (ICSOC'04), NY, 2004.

5. Altair Grid Technologies, LLC, A Batching Queuing System, Software Project, 2003.
6. Irwin, D., L. Grit, and J. Chase, "Balancing Risk and Reward in a Market-based Task

Service", in 13th International Symposium on High Performance Distributed Computing.
7. IBM, WSLA Language Specification, Version 1.0. 2003.
8. Pearlman, L., et al., "A Community Authorization Service for Group Collaboration", in

IEEE 3rd International Workshop on Policies for Distributed Systems and Networks.
9. Voeckler, J., et al, "Euryale: Yet another Concrete Planner", Virtual Data Workshop,

Presentation, 2004.
10. Legrand, I.C., et al. "MonALISA: A Distributed Monitoring Service Architecture", in

Computing in High Energy Physics, La Jolla, CA, 2003.
11. Ludwig, H., A. Dan, and B. Kearney. "Cremona: An Architecture and Library for Creation

and Monitoring WS-Agreements", in ACM International Conference on Service Oriented
Computing (ICSOC'04), NY, 2004.

12. Cluster Resources, Inc., Maui Scheduler, Software Project, 2001-2005.
13. Henry, G.J., A Fair Share Scheduler. AT&T Bell Laboratory Technical Journal, 1984.
14. Kay, J. and P. Lauder, "A Fair Share Scheduler", University of Sydney, AT&T Bell Labs.
15. In, J., P. Avery, R. Cavanaugh, and S. Ranka, "Policy Based Scheduling for Simple

Quality of Service in Grid Computing", in International Parallel & Distributed Processing
Symposium (IPDPS), New Mexico, '04.

16. Buyya, R., "GridBus: A Economy-based Grid Resource Broker", The University of
Melbourne, 2004, Melbourne.

17. Dumitrescu, C. and I. Foster, "GangSim: A Simulator for Grid Scheduling Studies", in
Cluster Computing and Grid (CCGrid), 2005, Cardiff, UK.

18. Dumitrescu, C., and I. Foster, "GRUBER: A Grid Resource SLA Broker", Euro-Par, 2005,
Lisbon, Portugal.

19. Dumitrescu, C., I. Foster and I. Raicu, “A Scalability and Performance Measurements of a
Usage SLA based Broker in Large Environments”, iVDGL/GriPhyN Tech-Report, 2005.

20. Avery, P. and I. Foster, "GriPhyN Project Description", http://www.griphyn.org.
21. Dumitrescu, C., Wilde, M., and Foster, I., "A Model for Usage Policy-based Resource

Allocations in Grids", in IEEE/Policy Workshop, 2005, Stockholm, Sweden.
22. Zhuge, H., The Future Interconnection Environment, IEEE Computer, 38 (4)(2005) 27-33.

