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Abstract 

Wireless sensor networks are finally becoming a 
reality.  In this paper, we present a scalable architecture 
for using wireless sensor networks in combination with 
wireless Ethernet networks to provide a complete end-to-
end solution to narrow the gap between the low-level 
information and context awareness.  We developed and 
implemented a complete proximity detector in order to 
give a wearable computer, such as a PDA, location 
context.  Since location is only one element of context-
awareness, we pursued utilizing photo sensors and 
temperature sensors in learning as much as possible about 
the environment.  We used the TinyOS RF Motes as our 
test bed WSN (Wireless Sensor Network), 802.11 
compatible hardware as our wireless Ethernet network, 
and conventional PCs and wired 802.3 networks to build 
the upper levels of the architecture.   

Keywords: context-awareness, wireless sensors, 
network, localization, architecture 

1 INTRODUCTION 

Over the last half a century, computers have 
exponentially increased in processing power and at the 
same time decreased in both size and price.  These rapid 
advancements led to a very fast market in which 
computers would participate in more and more of our 
society’s daily activities.  In recent years, one such 
revolution has been taking place, where computers are 
becoming so small and so cheap, that single-purpose 
computers with embedded sensors are almost practical 
from both economical and theoretical points of view.  The 
next logical step in combining wireless sensor networks 
and context aware wearable computers is to build an 
infrastructure, and make the technology easy enough to be 
implemented by non-specialists.   

In order to better understand the problem this 
paper is concentrating on, both low-level information and 
context-awareness should be clearly defined.  The low-
level information consists of the raw sensor readings data, 
such as temperature, light intensity, radio signal strength, 
etc.  However, humans do not relate well to raw numbers 
read from the sensor, and therefore at the very least, the 
system should translate the raw number to a known scale, 
such as Fahrenheit for temperature.  This is better, but it is 
still not enough, because having a temperature in 
Fahrenheit still does not indicate what it means, and 
therefore thresholds must be set to identify what cold, 
moderate, and hot mean in a certain context.  Then, if the 
computer knows that it is cold in the room, it would turn 
up the heat.  Therefore, context-awareness as we will be 
using it throughout this paper is the condition in human 
understandable terms in which a computer or application 
is operating; of course, the computer or application should 
adapt its operating requirements depending on the 
context.  Thus, a system that behaves in such a fashion is 
termed as being context-aware.   

Our process of converting low level information 
to high level information is divided into three parts.  The 
first is the data acquisition, which until recently has been 
very difficult because of the limited application of wired 
sensors.  In our case, we are using wireless RF sensors 
which run the TinyOS [3].  A future method could 
potentially use “Smart Dust”.  “Smart Dust” is a Micro-
Electro Mechanical Systems (MEMS) which are 
essentially micron scale wireless sensors [6].  In order to 
connect the acquisition stage with the processing stage, 
we use two technologies already in wide use and 
acceptance, IEEE 802.3 [4] networks and IEEE 802.11 
[5] networks.  802.3 networks have a wired physical 
medium of communication, such as copper or optical 
fiber.  On the other hand, 802.11 networks have a wireless 
RF communication medium, but use the same Ethernet 
frames as their wired counterparts, which allows them to 
interoperate easily.  The second part is to preprocess all 
the data and store the results (state information about each 
node) in a local database.  In order to link the second 
phase with the third one, the same communication 
technologies are used, both wired and wireless Ethernet 
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networks.  The third stage is to retrieve the state 
information about certain nodes, which should give 
information about the context of the environment such as 
location, temperature, light levels, etc.   

To some extent, the systems “MetaPark” in [1] 
and “GUIDE” in [2] have both addressed some of the 
issues that we discussed thus far.  The difference between 
our proposed work and what has already been done is the 
generalization of making a system that is scalable and 
universally usable.  This is a very powerful statement, 
however with keeping the end result in close focus, the 
right decisions can be made in these early stages of this 
new technology.  Our ultimate goal is to make wearable 
computers context-aware everywhere and give them the 
capability of adapting their behavior depending on the 
context in which a certain application will be operated. 

In this paper, we exemplify several applications 
utilizing context-awareness (Section 2), we then propose a 
general architecture to obtain context-awareness from 
low-level information (Section 3), explain the proximity 
detection algorithm in detail (Section 3.2), describe our 
preliminary experimental results obtained by 
implementing a pilot system based on the proposed design 
(Section 4), and finally conclude (Section 5). 

2 MOTIVATION AND GOALS 

In terms of localization techniques, one might 
ask the question regarding why GPS (Global Positioning 
System) is not sufficient in handling some of the 
problems stated in this paper, especially that there already 
is a global infrastructure deployed, orbital satellites.  The 
answer lies in having both indoor and outdoor localization 
at the same time.  GPS only offers this when it has a clear 
view of the sky, mostly in outdoor situations.  We are 
trying to expand the usability of a localization tool that 
would use GPS for outdoor localization and at the same 
time it would use a wireless sensor network to achieve the 
same thing indoors.  By combining these two 
technologies, we can essentially create an end-to-end 
proximity detector that would work both outdoors and 
indoors. 

Localization is the most prominent application 
that this architecture brings to mobile computing.  Having 
a wearable computer know its position at all times is a 
huge leap forward in making the computer interact 
depending on the location.  For example, if a person is at 
his desk, he might want to receive certain messages while 
if he is at a restaurant at lunch, he might want to receive a 
different set of messages, or perhaps if he is on vacation 
on the beach he might want to receive yet another 
different set.   

Obviously, this ties in directly to getting 
information about the location you are at, whether it is 
about the next meeting for a person at work, to what the 
movie times and summaries are for a person at the movie 
theater, to what the menu is at the restaurant, and so on.  
All these applications would automatically help the user 
without asking for much interaction.  For this idea to 
become a reality, beacons (wireless nodes) must be placed 
throughout the entire coverage of the infrastructure and 
programmed to emit a unique ID.  The user that would be 
in proximity of the beacons would then receive the signal 
on the wearable computer, such as a PDA, via the 
integrated wireless sensor node, after which it would 
query the local server (similar to the foreign agent in 
mobile IP [7]) via the 802.11 wireless network, for 
information regarding the beacon that it heard.  The local 
server would respond back with either the information 
itself or perhaps a URL to a web site with the 
corresponding information.  We plan on pursuing this 
idea by implementing such a pilot system in the near 
future. 

  Yet another example is utilizing the sensor 
information to figure out the context in which the 
computer is situated.  For example, if there are many 
people in a room, most likely the temperature will 
increase and the volume level is much higher than if there 
are fewer people in the room.  This could immediately 
prompt the ventilation system in the room to increase the 
air flow and decrease the temperature.  This could also 
prompt a wearable computer to have louder audible alerts 
in order to get the attention of the user.  Photo sensors can 
be utilized in realizing the lighting conditions and 
adjusting the brightness and contrast on the display screen 
automatically.  Vibration sensors could realize if the user 
is sitting at a desk or traveling in a car and therefore 
modify the handwriting recognition characteristics due to 
the different style of writing. 

There are endless examples where wireless 
sensor networks could be used to realize context-
awareness in wearable computers; however, none of them 
can be realized without a very much needed scalable 
infrastructure.  The significance of our work lies in 
implementing a system that can give any general purpose 
computer or application context-awareness. 

3 PROPOSED ARCHITECTURE 

We are going to concentrate most of our efforts 
on building a system with off-the-shelf components, 
which might include production and experimental 
hardware and software.   

The hardware and software is comprised of 
devices at 4 different levels.  At the bottom level, we have 



the RENE RF motes (MMS and FMS in Fig. 1) with the 
TinyOS that takes samples from their sensors, or perhaps 
the active badge utilizing the infrared spectrum, or the 
GPS, or any other sensor device.  This level represents the 
acquisition level introduced in Section 1. At the next 
level, we have a wearable computer (MWC in Fig. 1)  

 

Figure 1: The proposed architecture at the BuL and 
WSN Levels; lines in general represent communication 
mediums; double solid lines represent the UART; dotted lines 
represent wireless communication, whether it is via 802.11 
standard, or the WSN; and solid lines represent wired physical 
medium such as copper or optical fiber and uses 802.3 standard  

such as a PDA, which might or might not be equipped 
with either a wireless sensor for communication with the 
sensor network, or perhaps an 802.11 wireless Ethernet 
network card to communicate with the intranet.  Next 
there would be base stations (FBS in Fig. 1), which will 
most likely be workstations running standard operating 
systems such as Microsoft Windows and also have 
wireless capabilities to communicate with the sensor 
network and also possibly a wired (802.3)/wireless 
(802.11) connection to the local intranet.  There is one 
more upper level, consisting of one or more servers that 
communicate through the wired/wireless intranet with all 
the base stations and maintains a consistent database with 
state information of the wireless sensor network.  This 
state information could be comprised of numerous items, 
such as location information, online/offline status, sensor 
information, etc.  Levels 2, 3, and 4 are part of the 
processing level that takes the input from the sensors, 
analyzes it and writes the state information into a 
database.  The last stage is the retrieval process in which a 
MWC (Mobile Wearable Computer) interrogates the 
database and concludes a context in which it must 
operate.  Obviously, we have only addressed the problem 
on a local intranet which is most likely limited to a 
physical building, however, the same system can be 
further expanded by adding more levels to give the 
system a universal architecture in which every wireless 
sensor node becomes an online object.  The expanded 

architecture is briefly presented in Section 5 and will be 
the subject of a future paper. 

The entire global proposed system is described 
using three diagrams shown in Fig. 1, 2 and 7.  In this 
paper, we concentrate our discussion on the parts of the 
system illustrated by Fig. 1 and 2, while Fig. 7 illustrates 
the universal architecture and thus, encompasses both the 
Building Level (BuL) and the Wireless Sensor Network 
(WSN) from Fig 1 and 2, respectively.  

To better understand how the wireless sensor 
network nodes communicate with each other, consider 
Figure 2 below.  In this diagram, we present only the 
WSN that is presented in both Fig. 1 and 7, but at the 
level of communication messages.    

 

Figure 2. Sample communication in WSN 

In Fig. 2, FMS 01 is a base station connected to a 
PC; this can be viewed as the gateway between the 
wireless sensor network and the wired/wireless Ethernet 
network and both comprise the FBS.  FMS 02 and 03 are 
hybrid base stations due to the fact that they are stand-
alone wireless sensor nodes which communicate with all 
other nodes within range and communicate useful 
information to FBS, such as proximity detection, photo 
and sensor information, etc.  Mote 04 is a mobile sensor 
node which could be either solo on a badge, or perhaps 
work in conjunction with a wearable computer (MWC).  
The nodes are self-configurable in terms of finding their 
base stations and routing useful information to the right 
node; the routing is all handled within the TinyOS. 

3.1 Sensor Hardware and Software 

We used the RENE RF Mote which runs the 
TinyOS, a very small footprint event driven operating 
system designed for computers with limited processing 
power and battery life.  While still under development and 



very early in its life cycle, the technology seems very 
promising due to the fact that the OS and its applications 
are written in a C - like programming language that 
already has a very broad base of users.  A mote consists 
of a mote motherboard with a 4 MHz Atmel processor, 
512 bytes of SRAM, 8KB of flash memory, a 916.5 MHz 
RF transceiver, and an antenna. 

 

Figure 3: RENE RF Mote 

An optional sensor board that plugs into the mote 
motherboard and includes both a photo and temperature 
sensor can be used as well.  Our current implementation 
allows up to five more analog sensors in addition to the 
existing photo and temperature sensors. 

At the moment, it requires technical specialists in 
order to successfully integrate a system so complex, but 
our hopes are that as this technology matures and the 
infrastructure grows, it will be as easy as turning on a 
wireless sensor node to be able to integrate it to the 
existing network. 

3.2 Proximity Detection Algorithm 

Our implementation is based on the proximity 
detection algorithm described below and makes use of the 
following concepts.  A message is a set of information 
from a wireless sensor node.  The typical information 
consists of the source of the message, destination, signal 
strength (which is directly proportional with the distance 
between the source and destination of the message), and 
the timestamp.  The timestamp is a real time value 
associated with the reception of the message; notice that 
logical timestamps could also be used to simplify the 
algorithm.  The memory is represented by a 3-dimensional 
array which can be visualized in Fig. 4.  Axes X and Y 
correspond to the destination and source of a message 
respectively; the data element of the array consists of the 
RF signal strength; finally, the Z axis represents the 
timeline and hence is the history of the previous states.  A 
state change occurs when the location of the mobile RF 
mote changed with a good confidence.  A good 
confidence is defined by step 3 if criteria a, b, and c are all 
satisfied.  The last known location is derived by 
comparing the signal strengths of all the last set of 

messages; realize that there is no confidence that the 
location is indeed accurate.  The last confirmed location is 
derived by step 4 below which produces a good 
confidence. 

 
Figure 4. The memory layout: used to derive the 

confidence that a state has changed. 

Our algorithm is broken down into five steps.  
All fice steps must be executed sequentially forever, or 
until the user decides to terminate the process. 

1. Receive message and  timestamp it 

2. Update memory which includes adding new entries 
and deleting expired entries (only retain the last 6 
seconds of information) 

3. Search memory for a state change defined according 
to the following criteria 

a. Is the last known location different than the last 
confirmed location? 

b. Are there at least 3 messages in the history 
announcing the new location? 

c. Is the average of the signal strengths of the last 3 
messages greater than any other location for the 
last 3 messages? 

4. If a, b, and c are all true in Step 4, then replace the 
last confirmed location with the last know location 

5. Display the last confirmed location 

It is evident that both Steps 2 and 3 will heavily 
influence the performance of the algorithm.  Increasing 
the memory of the algorithm and requiring stricter tests in 
searching for state changes might make the algorithm 
more suitable for environments in which much 
interference is present.  Decreasing the memory and the 
strictness of the same tests might prove to produce faster 
algorithms, but will decrease the accuracy of the system. 



4 EXPERIMENTAL RESULTS 

In our experiments, we started the problem of 
proximity detection using the wireless RF motes from 
Fig. 3.  We used the approach of having fixed beacons 
throughout an area, a base station which acted as the 
gateway to the Intranet to update the central database, and 
a badge with a RF mote identifying the user.  According 
to [8], approximate localization is possible using RF 
signal strength readings and triangulation.   

We implemented our system using those ideas 
and proved that proximity can be established by 
calculating signal strengths between the various wireless 
nodes and aggregating all the information at the base 
stations, which then updates a database on a local server 
with the new state information of all the nodes in range.  
With the use of history information regarding the state of 
each node, the location can be approximated with a 
resolution correlated only with the node density.  In the 
event of a badge system in which each badge would have 
a wireless node, the closest base station would calculate 
the proximity of the badge in relation to the other nodes.  
In the event of a wearable computer, the PDA would use 
its 802.11 network resources in retrieving necessary 
information regarding its location. 

 

Figure 5: Current implementation displaying location 
information and sensor readings already converted to human 
readable numbers, such as Fahrenheit temperature and 
percentage of light present   

The current user interface is meant to convey the 
location’s ID and description, and the sensor information 
at the corresponding location.  Fig. 5 shows a screen shot 
of the interface.  Our demo was implemented on a laptop 
computer running Windows 2000, but the same interface 
can easily be ported to a PDA. 

In order to convey the performance of the 
described architecture, we conducted a set of experiments 
in an open 15 by 20 ft. rectangular room.  In positioning 
the sensor nodes throughout the room, we used the 
schema from Fig. 2: the base station was positioned in 
one of the corners, while three other FMS (fixed RF 
motes) were placed in the other 3 corners of the room.  
When the MMS (mobile RF mote) walks in the room, its 
presence will be detected and its position will be 
transmitted to the base station.  When the MMS walks 
around the room, the base station will recalculate the 
MMS’s position at every message in terms of which FMS 
it was closest to.  The results in Fig. 6 were achieved by 
repeatedly walking around the room and measuring the 
accuracy of the state changes, the average time to detect 
the state change, and the maximum distance that the 
algorithm realized the state change.  The maximum 
distance we obtained can easily be smaller or greater 
depending with what rate of speed the MMS is moving. 

Accuracy to Detect State Changes 100% 
Average Time to Detect State Change 3 seconds 
Maximum Distance to Detect State Change 6 feet 

Figure 6: Performance metrics and results for the 
proposed algorithm in Section 3.2 

The results are also heavily dependent on the 
parameters set within our proximity detector algorithm 
described in Section 3.2.  Increasing the memory of the 
algorithm and requiring stricter tests in searching for state 
changes might make the algorithm more suitable for 
environments in which much interference is present, but it 
might increase the average time taken to detect a state 
change.  Decreasing the memory and the strictness of the 
tests might prove to produce faster algorithms, but will 
decrease the accuracy of the system; notice that if only the 
last message received is taken into consideration, and the 
mobile RF mote is half way between two fixed RF motes, 
the state of the mobile RF mote could be changing at each 
message producing an output that makes no sense.  The 
algorithm’s parameters we chose, such as having a six 
second memory and taking the average of the last three 
messages, gave the algorithm a good enough confidence 
when a state change was detected.    

5 CONCLUSIONS AND FUTURE WORK 

In this paper, we discussed a possible 
architecture for making context-aware applications a 
reality.  As a quick reiteration, we used the TinyOS RF 
motes and 802.11 compatible hardware, and off-the-shelf 
workstations to realize the test-bed.  We utilized 
proximity detection indoors, photo sensors, and 
temperature sensors to give wearable computer context 
information about its environment.  Our system is 
scalable due to its hierarchical structure.  Our preliminary 



results at the lower levels of the hierarchy seem very 
promising. 

As future work, we plan on integration of the RF 
mote into a PDA in order to allow more mobility for the 
user.  This would then allow the architecture to be tested 
more thoroughly as we deploy the wireless sensors 
throughout the building.   

A further step would be to have the hierarchical 
system in Fig. 7 that is location-based and would allow a 
unified infrastructure very similar to what the Internet has 
evolved to today.  Placing servers at all these various 
levels would essentially place every wireless sensor node 
online, and have it identified according to its location and 
possibly function.  

 

Figure 7: Possible future hierarchical system to 
support wireless sensor nodes in having an on-line presence 

The proposed system is scalable due to the fact 
that each level has only to know about itself, the level 
above it, and the one below it. Therefore the overhead of 
having billions of nodes becomes very distributed.  
Moreover, each level is responsible for the level adjacent 
to itself.  This approach has its similarities with the class-
based approach of internet addressing, in which each 
network administers its own addresses.  Once such a 
system is in place, an object such as a wireless sensor 
node could be identified by its GUA (Globally Unique 
Address): CoL.StL.CiL.NeL.BuL.LocalUniqueID (the 
acronyms in the GUA are defined in Fig. 7) 

We hope that the ideas and experimentation 
presented in the paper will have a great impact on this 
new and emerging technology and will help others on 

developing a global infrastructure to make context-
awareness a part of tomorrow’s computers. 
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