
IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 1

Performance Analysis of Cloud Computing
Services for Many-Tasks Scientific Computing

Alexandru Iosup, Member, IEEE, Simon Ostermann,Nezih Yigitbasi, Member, IEEE,
Radu Prodan, Member, IEEE, Thomas Fahringer, Member, IEEE, and Dick Epema, Member, IEEE

Abstract —Cloud computing is an emerging commercial infrastructure paradigm that promises to eliminate the need for maintaining
expensive computing facilities by companies and institutes alike. Through the use of virtualization and resource time-sharing, clouds
serve with a single set of physical resources a large user base with different needs. Thus, clouds have the potential to provide to their
owners the benefits of an economy of scale and, at the same time, become an alternative for scientists to clusters, grids, and parallel
production environments. However, the current commercial clouds have been built to support web and small database workloads,
which are very different from typical scientific computing workloads. Moreover, the use of virtualization and resource time-sharing may
introduce significant performance penalties for the demanding scientific computing workloads. In this work we analyze the performance
of cloud computing services for scientific computing workloads. We quantify the presence in real scientific computing workloads of
Many-Task Computing (MTC) users, that is, of users who employ loosely coupled applications comprising many tasks to achieve their
scientific goals. Then, we perform an empirical evaluation of the performance of four commercial cloud computing services including
Amazon EC2, which is currently the largest commercial cloud. Last, we compare through trace-based simulation the performance
characteristics and cost models of clouds and other scientific computing platforms, for general and MTC-based scientific computing
workloads. Our results indicate that the current clouds need an order of magnitude in performance improvement to be useful to the
scientific community, and show which improvements should be considered first to address this discrepancy between offer and demand.

Index Terms —Distributed Systems, Distributed applications, Performance evaluation, Metrics/Measurement, Performance measures.

✦

1 INTRODUCTION

S CIENTIFIC computing requires an ever-increasing
number of resources to deliver results for ever-

growing problem sizes in a reasonable time frame. In
the last decade, while the largest research projects were
able to afford (access to) expensive supercomputers,
many projects were forced to opt for cheaper resources
such as commodity clusters and grids. Cloud computing
proposes an alternative in which resources are no longer
hosted by the researchers’ computational facilities, but
are leased from big data centers only when needed.
Despite the existence of several cloud computing offer-
ings by vendors such as Amazon [1] and GoGrid [2],
the potential of clouds for scientific computing remains
largely unexplored. To address this issue, in this paper
we present a performance analysis of cloud computing
services for many-task scientific computing.

The cloud computing paradigm holds great promise
for the performance-hungry scientific computing com-
munity: Clouds can be a cheap alternative to supercom-
puters and specialized clusters, a much more reliable
platform than grids, and a much more scalable platform

• A. Iosup, N. Yigitbasi, and D. Epema are with the Parallel and Distributed
Systems, Delft University of Technology, Delft, the Netherlands.

• S. Ostermann, R. Prodan, and T. Fahringer are with the Institute for
Computer Science, University of Innsbruck, Innsbruck, Austria.

• Corresponding author: Alexandru Iosup A.Iosup@tudelft.nl.

than the largest of commodity clusters. Clouds also
promise to “scale by credit card,” that is, to scale up
instantly and temporarily within the limitations imposed
only by the available financial resources, as opposed
to the physical limitations of adding nodes to clusters
or even supercomputers and to the administrative bur-
den of over-provisioning resources. Moreover, clouds
promise good support for bags-of-tasks, which currently
constitute the dominant grid application type [3]. How-
ever, clouds also raise important challenges in many
aspects of scientific computing, including performance,
which is the focus of this work.

There are three main differences between scientific
computing workloads and the initial target workload of
clouds: in required system size, in performance demand,
and in the job execution model. Size-wise, top scientific
computing facilities comprise very large systems, with
the top ten entries in the Top500 Supercomputers List
together totaling about one million cores, while cloud
computing services were designed to replace the small-
to-medium size enterprise data centers. Performance-
wise, scientific workloads often require High Perfor-
mance Computing (HPC) or High-Throughput Comput-
ing (HTC) capabilities. Recently, the scientific computing
community has started to focus on Many-Task Comput-
ing (MTC) [4], that is, on high-performance execution
of loosely coupled applications comprising many (pos-
sibly inter-related) tasks. With MTC, a paradigm at the
intersection of HPC and HTC, it is possible to demand

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 2

systems to operate at high utilizations, similar to those of
current production grids (over 80% [5]) and Parallel Pro-
duction Infrastructures (PPIs) (over 60% [6]), and much
higher than those of the systems that clouds originally
intended to replace (servers with 10-20% utilization). The
job execution model of scientific computing platforms is
based on the exclusive, space-shared usage of resources.
In contrast, most clouds time-share resources and use
virtualization to abstract away from the actual hardware,
thus increasing the concurrency of users but potentially
lowering the attainable performance.

These three main differences between scientific com-
puting workloads and the target workloads of clouds
raise an important research question: Is the performance
of clouds sufficient for MTC-based scientific computing?,
or, in other words, Can current clouds execute MTC-
based scientific workloads with similar performance (that is,
for traditional performance metrics [7]) and at lower cost?
Though early attempts to characterize clouds and other
virtualized services exist [8], [9], [10], [11], [12], this ques-
tion remains largely unexplored. Our main contribution
toward answering it is threefold:

1) We investigate the presence of a (proto-)MTC
component in scientific computing workloads and
quantify the presence of these users in scientific
computing environments.

2) We evaluate with well-known micro-benchmarks
and application kernels the performance of four
commercial cloud computing services that can be
used for scientific computing, among which the
Amazon Elastic Compute Cloud (EC2), the largest
commercial computing cloud in production.

3) We compare the performance of clouds with that
of scientific computing alternatives such as grids
and parallel production infrastructures. Our com-
parison uses trace-based simulation and the empir-
ical performance results of our cloud performance
evaluation.

The remainder of the article is organized as follows.
In Section 2 we give a general introduction to the use of
cloud computing services for scientific computing, and
select four exemplary clouds for use in our investigation.
Then, in Section 3 we focus on finding the MTC com-
ponent in existing scientific computing workloads, and
in Section 4 we evaluate empirically the performance of
four commercial clouds. In Section 5 we compare the
performance of clouds and of other scientific computing
environments. Last, we compare our investigation with
related work in Section 6, and we present our conclusion
and potential future research topics in Section 7.

2 CLOUD COMPUTING SERVICES FOR SCIEN-
TIFIC COMPUTING

In this section we provide a background to analyzing the
performance of cloud computing services for scientific
computing. We first describe the main characteristics of
the common scientific computing workloads, based on

previous work on analyzing and modeling of workload
traces taken from PPIs [6] and grids [5], [13]. Then,
we introduce the cloud computing services that can be
used for scientific computing, and select four commercial
clouds whose performance we will evaluate empirically.

2.1 Scientific Computing

Job structure and source PPI workloads are dominated
by parallel jobs [6], while grid workloads are dominated
by small bags-of-tasks (BoTs) [3] and sometimes by small
workflows [14], [15] comprising mostly sequential tasks.
Source-wise, it is common for PPI grid workloads to
be dominated by a small number of users. We consider
users that submit many tasks, often grouped into the
same submission as BoTs, as proto-MTC users, in that
they will be most likely to migrate to systems that
provide good performance for MTC workload execution.
We focus in Section 3 on a more rigorous definition of
MTC workloads, and on demonstrating their presence
in recent scientific workloads.

Bottleneck resources Overall, scientific computing
workloads are highly heterogeneous, and can have either
one of CPU, I/O, memory, and network as the bottleneck
resource. Thus, in Section 4 we investigate the perfor-
mance of these individual resources.

Job parallelism A large majority of the parallel jobs
found in published PPI [16] and grid [13] traces have up
to 128 processors [5], [6]. Moreover, the average scientific
cluster size was found to be around 32 nodes [17] and to
be stable over the past five years [18]. Thus, in Section 4
we look at the the performance of executing parallel
applications of up to 128 processors.

2.2 Four Selected Clouds: Amazon EC2, GoGrid,
ElasticHosts, and Mosso

We identify three categories of cloud computing ser-
vices [19], [20]: Infrastructure-as-a-Service (IaaS), that is,
raw infrastructure and associated middleware, Platform-
as-a-Service (PaaS), that is, APIs for developing applica-
tions on an abstract platform, and Software-as-a-Service
(SaaS), that is, support for running software services
remotely. Many clouds already exist, but not all provide
virtualization, or even computing services. The scientific
community has not yet started to adopt PaaS or SaaS
solutions, mainly to avoid porting legacy applications
and for lack of the needed scientific computing services,
respectively. Thus, in this study we are focusing only
on IaaS providers. We also focus only on public clouds,
that is, clouds that are not restricted within an enter-
prise; such clouds can be used by our target audience,
scientists.

Based on our recent survey of the cloud computing
providers [21], we have selected for this work four IaaS
clouds. The reason for this selection is threefold. First,
not all the clouds on the market are still accepting clients;
FlexiScale puts new customers on a waiting list for over
two weeks due to system overload. Second, not all the

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 3

TABLE 1
The resource characteristics for the instance types

offered by the four selected clouds.

Cores RAM Archi. Disk Cost
Name (ECUs) [GB] [bit] [GB] [$/h]

Amazon EC2
m1.small 1 (1) 1.7 32 160 0.1
m1.large 2 (4) 7.5 64 850 0.4
m1.xlarge 4 (8) 15.0 64 1,690 0.8
c1.medium 2 (5) 1.7 32 350 0.2
c1.xlarge 8 (20) 7.0 64 1,690 0.8

GoGrid (GG)
GG.small 1 1.0 32 60 0.19
GG.large 1 1.0 64 60 0.19
GG.xlarge 3 4.0 64 240 0.76

Elastic Hosts (EH)
EH.small 1 1.0 32 30 £0.042
EH.large 1 4.0 64 30 £0.09

Mosso
Mosso.small 4 1.0 64 40 0.06
Mosso.large 4 4.0 64 160 0.24

clouds on the market are large enough to accommodate
requests for even 16 or 32 co-allocated resources. Third,
our selection already covers a wide range of quantitative
and qualitative cloud characteristics, as summarized in
Tables 1 and our cloud survey [21], respectively. We
describe in the following Amazon EC2; the other three,
GoGrid (GG), ElasticHosts (EH), and Mosso, are IaaS
clouds with provisioning, billing, and availability and
performance guarantees similar to Amazon EC2’s.

The Amazon Elastic Computing Cloud (EC2) is an
IaaS cloud computing service that opens Amazon’s large
computing infrastructure to its users. The service is
elastic in the sense that it enables the user to extend
or shrink its infrastructure by launching or terminat-
ing new virtual machines (instances). The user can use
any of the instance types currently available on offer,
the characteristics and cost of the five instance types
available in June 2009 are summarized in Table 1. An
ECU is the equivalent CPU power of a 1.0-1.2 GHz
2007 Opteron or Xeon processor. The theoretical peak
performance can be computed for different instances
from the ECU definition: a 1.1 GHz 2007 Opteron can
perform 4 flops per cycle at full pipeline, which means
at peak performance one ECU equals 4.4 gigaflops per
second (GFLOPS).

To create an infrastructure from EC2 resources, the
user specifies the instance type and the VM image; the
user can specify any VM image previously registered
with Amazon, including Amazon’s or the user’s own.
Once the VM image has been transparently deployed
on a physical machine (the resource status is running),
the instance is booted; at the end of the boot process the
resource status becomes installed. The installed resource
can be used as a regular computing node immedi-
ately after the booting process has finished, via an ssh
connection. A maximum of 20 instances can be used
concurrently by regular users by default; an application

can be made to increase this limit, but the process
involves an Amazon representative. Amazon EC2 abides
by a Service Level Agreement (SLA) in which the user
is compensated if the resources are not available for
acquisition at least 99.95% of the time. The security of the
Amazon services has been investigated elsewhere [10].

3 MTC PRESENCE IN SCIENTIFIC COMPUT-
ING WORKLOADS

An important assumption of this work is that the existing
scientific workloads already include Many Task Comput-
ing users, that is, of users that employ loosely coupled
applications comprising many tasks to achieve their
scientific goals. In this section we verify this assumption
through a detailed investigation of workload traces taken
from real scientific computing environments.

3.1 Method and Experimental Setup

MTC workloads may comprise tens of thousands to
hundreds of thousands of tasks and BoTs [4], and a
typical period may be one year or the whole trace. Our
method for identifying proto-MTC users—users with
a pronounced MTC-like workload, which are potential
MTC users in the future—in existing system workloads
is based on the identification of users with many sub-
mitted tasks and/or bags-of-tasks in the workload traces
taken from real scientific computing infrastructures. We
define an MTC user to be a user that has submitted at
least J jobs and at least B bags-of-tasks. The user part of
our definition serves as a coupling between jobs, under
the assumption that a user submits jobs for execution
towards an arbitrary but meaningful goal. The jobs part
ensures that we focus on high-volume users; these users
are likely to need new scheduling techniques for good
system performance. The bag-of-tasks part ensures that
task submission occurs within a short period of time; this
submission pattern raises new challenges in the area of
task scheduling and management [4]. Ideally, it should
be possible to use a unique pair of values for J and B
across different systems.

To investigate the presence of an MTC component in
existing scientific computing infrastructures we analyze
ten workload traces. Table 2 summarizes the character-
istics of the ten traces; see [13], [16] for more details
about each trace. The ID of the trace indicates the system
from which it was taken. The traces have been collected
from a wide variety of grids and parallel production
environments. The traces precede the existence of MTC
tools; thus, the presence of an MTC component in these
traces indicates the existence of proto-MTC users, who
will be likely to use today’s MTC-friendly environments.

To identify MTC users, we first formulate the identi-
fication criterion by selecting values for J , B. If B ≥ 1,
we first identify the BoTs in the trace using the method
that we introduced in our previous work [22], that is,
we use the BoT identification information when it is

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 4

TABLE 2
The characteristics of the workload traces.

Trace ID, Trace System
Source (Trace ID Time Number of Size Load
in Archive) [mo.] Jobs Users Sites CPUs [%]

Grid Workloads Archive [13], 6 traces
1. DAS-2 (1) 18 1.1M 333 5 0.4K 15+
2. RAL (6) 12 0.2M 208 1 0.8K 85+
3. GLOW (7) 3 0.2M 18 1 1.6K 60+
4. Grid3 (8) 18 1.3M 19 29 3.5K -
5. SharcNet (10) 13 1.1M 412 10 6.8K -
6. LCG (11) 1 0.2M 216 200+ 24.4K -

Parallel Workloads Archive [16], 4 traces
7. CTC SP2 (6) 11 0.1M 679 1 0.4K 66
8. SDSC SP2 (9) 24 0.1M 437 1 0.1K 83
9. LANLO2K (10) 5 0.1M 337 1 2.0K 64
10. SDSC DS (19) 13 0.1M 460 1 1.7K 63

present in the trace, and identify BoTs as groups of tasks
submitted by the same user at and during short time
intervals, otherwise. (We have investigated the effect
of the time frame in the identification of BoTs in our
previous work [22].) Then, we eliminate the users that
have not submitted at least B BoTs. Last, from the
remaining users we select the users that have submitted
at least J tasks.

3.2 Results

The number of MTC users decreases quickly with
the increase of J and B. Figure 1 shows the results
for our analysis where we use the number of submitted
BoTs (left), and the number of submitted tasks (right) as
criteria for identifying MTC users for the DAS-2 (top)
and SDSC SP2 (bottom) traces. As expected, the number
of MTC users identified in the workload traces decreases
as the number of submitted BoTs/tasks increases. The
number of MTC users identified in the trace decreases
much faster in the SDSC trace than in the DAS-2 trace
with the increase of the number of BoTs/tasks. In ad-
dition, since there are not many MTC users for large
number of BoTs/tasks in PPI, we see evidence that there
is more MTC activity in grids than in PPI.

Expectedly, there is more MTC-like activity in grids
than in PPIs. To compare the MTC-like activity of grids
and PPIs we analyze for each trace the percentage of
MTC jobs from the total number of jobs, and the percent-
age of CPU time consumed by MTC jobs from the total
CPU time consumption recorded in the trace. Table 3
presents the results for various simple and complex
criteria for all traces. We use ”number of BoTs submitted
≥ 100” and ”number of jobs submitted ≥ 1,000” as the
simple criteria, and ”number of BoTs submitted ≥ 1,000
& number of tasks submitted ≥ 10,000” as the complex
criterion. Even for the simple criteria, we observe that
for PPIs, except for the LANL-O2K trace, there are no
MTC jobs for large values of B (the number of BoTs). As
the number of BoTs and tasks increases, the percentage
of MTC jobs and their consumed CPU-time decrease for
both PPI and grids, as expected. However, for the Grid3

and GLOW traces the MTC activity is highly present
even for large values of J and B.It turns out that the
complex criterion additionally selects mostly users who
submit many single-node tasks (not shown). Since this
type of proto-MTC workload has the potential to execute
well in any environment, including clouds, we select and
use this complex criterion for the remainder of this work.

4 CLOUD PERFORMANCE EVALUATION

In this section we present an empirical performance
evaluation of cloud computing services. Toward this
end, we run micro-benchmarks and application kernels
typical for scientific computing on cloud computing
resources, and compare whenever possible the obtained
results to the theoretical peak performance and/or the
performance of other scientific computing systems.

4.1 Method

Our method stems from the traditional system bench-
marking. Saavedra and Smith [23] have shown that
benchmarking the performance of various system com-
ponents with a wide variety of micro-benchmarks and
application kernels can provide a first order estimate
of that system’s performance. Similarly, in this section
we evaluate various components of the four clouds
introduced in Section 2.2. However, our method is not
a straightforward application of Saavedra and Smith’s
method. Instead, we add a cloud-specific component,
select several benchmarks for a comprehensive platform-
independent evaluation, and focus on metrics specific to
large-scale systems (such as efficiency and variability).

Cloud-specific evaluation An attractive promise of
clouds is that they can always provide resources on
demand, without additional waiting time [20]. How-
ever, since the load of other large-scale systems varies
over time due to submission patterns [5], [6] we want
to investigate if large clouds can indeed bypass this

TABLE 3
The percentage of MTC jobs, and the CPU time

consumed by these jobs from the total number of jobs
and consumed CPU time for all traces, with various

simple and complex criteria for identifying MTC users.
CPUT stands for Total CPU Time.

Simple criteria Complex criterion
Jobs ≥ 10,000 &

BoTs ≥ 100 Tasks ≥ 1,000 BoTs ≥ 1,000
Jobs CPUT Jobs CPUT Jobs CPUT

Trace ID [%] [%] [%] [%] [%] [%]
DAS-2 90 65 95 73 57 26
RAL 81 78 98 94 33 28
GLOW 95 75 99 91 83 69
Grid3 100 97 100 97 97 95
SharcNet 40 35 95 85 15 9
LCG 61 39 87 61 0 0
CTC SP2 16 13 18 14 0 0
SDSC SP2 13 93 25 6 0 0
LANL O2 66 14 73 18 34 6
SDSC DS 29 7 44 18 0 0

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 5

 0

 50

 100

 150

 200

 250

 300

 1
0

0

 1
0

0
0

 5
0

0
0

 1
0

0
0

0

N
u

m
b

e
r

o
f

U
s
e

rs

BoT Count

Number of Users

 0

 50

 100

 150

 200

 250

 1
0

0

 1
0

0
0

 5
0

0
0

 1
0

0
0

0

 2
0

0
0

0

 5
0

0
0

0

 1
0

0
0

0
0

N
u

m
b

e
r

o
f

U
s
e

rs

Task Count

Number of Users

 0

 50

 100

 150

 200

 250

 1
0

0

 1
0

0
0

 5
0

0
0

 1
0

0
0

0

N
u

m
b

e
r

o
f

U
s
e

rs

BoT Count

Number of Users

 0

 50

 100

 150

 1
0

0

 1
0

0
0

 5
0

0
0

 1
0

0
0

0

 2
0

0
0

0

 5
0

0
0

0

 1
0

0
0

0
0

N
u

m
b

e
r

o
f

U
s
e

rs
Task Count

Number of Users

Fig. 1. Number of MTC users for the DAS-2 trace (top), and the San Diego Supercomputer Center (SDSC) SP2 trace
(bottom) when considering only the submitted BoT count criterion (left), and only submitted task count criterion (right).

TABLE 4
The benchmarks used for cloud performance evaluation.

B, FLOP, U, and PS stand for bytes, floating point
operations, updates, and per second, respectively.

Type Suite/Benchmark Resource Unit
SI LMbench/all [24] Many Many
SI Bonnie/all [25], [26] Disk MBps
SI CacheBench/all [27] Memory MBps
MI HPCC/HPL [28], [29] CPU GFLOPS
MI HPCC/DGEMM [30] CPU GFLOPS
MI HPCC/STREAM [30] Memory GBps
MI HPCC/RandomAccess [31] Network MUPS
MI HPCC/beff (lat.,bw.) [32] Comm. µs, GBps

problem. To this end, one or more instances of the
same instance type are repeatedly acquired and released
during a few minutes; the resource acquisition requests
follow a Poisson process with arrival rate λ = 1s−1.

Infrastructure-agnostic evaluation There currently is
no single accepted benchmark for scientific computing at
large-scale. To address this issue, we use several tradi-
tional benchmark suites comprising micro-benchmarks
and (scientific) application kernels. We further design
two types of test workloads: SI–run one or more single-
process jobs on a single instance (possibly with multiple
cores), and MI–run a single multi-process job on multiple
instances. The SI workloads execute in turn one of the
LMbench [33], Bonnie [34], and CacheBench [35] bench-
mark suites. The MI workloads execute the HPC Chal-
lenge Benchmark (HPCC) [28] scientific computing bench-
mark suite. The characteristics of the used benchmarks
and the mapping to the test workloads are summarized
in Table 4; we refer to the benchmarks’ references for
more details.

Performance metrics We use the performance metrics
defined by the benchmarks presented in Table 4. We

TABLE 5
The VM images used in our experiments.

VM image OS, MPI Archi Benchmarks
EC2/ami-2bb65342 FC6 32bit SI
EC2/ami-36ff1a5f FC6 64bit SI
EC2/ami-3e836657 FC6, MPI 32bit MI
EC2/ami-e813f681 FC6, MPI 64bit MI
GG/server1 RHEL 5.1, MPI 32&64bit SI&MI
EH/server1 Knoppix 5.3.1 32bit SI
EH/server2 Ubuntu 8.10 64bit SI
Mosso/server1 Ubuntu 8.10 32&64bit SI

also define and use the HPL efficiency of a virtual cluster
based on the instance type T as the ratio between the
HPL benchmark performance of the real cluster and the
peak theoretical performance of a same-sized T-cluster,
expressed as a percentage. Job execution at large-scale
often leads to performance variability. To address this
problem, in this work we report not only the average
performance, but also the variability of the results.

4.2 Experimental Setup

We now describe the experimental setup in which we use
the performance evaluation method presented earlier.

Performance Analysis Tool We have recently [36]
extended the GrenchMark [37] large-scale distributed
testing framework with new features which allow it
to test cloud computing infrastructures. The framework
was already able to generate and submit both real and
synthetic workloads to grids, clusters, clouds, and other
large-scale distributed environments. For this work, we
have added to GrenchMark the ability to execute and
analyze the benchmarks described in the previous sec-
tion.

Environment We perform our measurements on ho-
mogeneous virtual environments built from virtual re-

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 6

sources belonging to one of the instance types described
in Table 1; the used VM images are summarized in
Table 5. The experimental environments comprise from
1 to 128 cores. Except for the use of internal IP addresses,
described below, we have used in all our experiments the
standard configurations provided by the cloud. Due to
our choice of benchmarks, our Single-Job results can be
readily compared with the benchmarking results made
public for many other scientific computing systems, and
in particular by the HPCC effort [38].

MPI library and network The VM images used for the
HPCC benchmarks also have a working pre-configured
MPI based on the mpich2-1.0.5 [39] implementation.
For the MI (parallel) experiments, the network selec-
tion can be critical for achieving good results. Amazon
EC2 and GoGrid, the two clouds for which we have
performed MI experiments, use internal IP addresses
(IPs), that is, the IPs accessible only within the cloud,
to optimize the data transfers between closely-located
instances. (This also allows the clouds to better shape the
traffic and to reduce the number of Internet-accessible
IPs, and in turn to reduce the cloud’s operational costs.)
EC2 and GoGrid give strong incentives to their cus-
tomers to use internal IP addresses, in that the network
traffic between internal IPs is free, while the traffic to
or from the Internet IPs is not. We have used only
the internal IP addresses in our experiments with MI
workloads.

Optimizations, tuning The benchmarks were com-
piled using GNU C/C++ 4.1 with the
-O3 -funroll-loops command-line arguments. We
did not use any additional architecture- or instance-
dependent optimizations. For the HPL benchmark, the
performance results depend on two main factors: the the
Basic Linear Algebra Subprogram (BLAS) [40] library,
and the problem size. We used in our experiments the
GotoBLAS [41]library, which is one of the best portable
solutions freely available to scientists. Searching for the
problem size that can deliver peak performance is an
extensive (and costly) process. Instead, we used a free
analytical tool [42] to find for each system the problem
sizes that can deliver results close to the peak perfor-
mance; based on the tool advice we have used values
from 13,000 to 110,000 for N, the size (order) of the
coefficient matrix A [28], [43].

4.3 Results

The experimental results of the Amazon EC2 perfor-
mance evaluation are presented in the following.

4.3.1 Resource Acquisition and Release

We study two resource acquisition and release scenarios:
for single instances, and for multiple instances allocated
at once.

Single instances We first repeat 20 times for each
instance type a resource acquisition followed by a release
as soon as the resource status becomes installed (see

TABLE 6
Statistics for single resource allocation/release.

Instance Res. Allocation Res. Release
Type Min Avg Max Min Avg Max
m1.small 69 82 126 18 21 23
m1.large 50 90 883 17 20 686
m1.xlarge 57 64 91 17 18 25
c1.medium 60 65 72 17 20 22
c1.xlarge 49 65 90 17 18 20
GG.large 240 540 900 180 210 240
GG.xlarge 180 1,209 3,600 120 192 300

Section 2.2). Figure 2 shows the overheads associated
with resource acquisition and release in EC2. The total
resource acquisition time (Total) is the sum of the Install
and Boot times. The Release time is the time taken to
release the resource back to EC2; after it is released
the resource stops being charged by Amazon. The c1.*
instances are surprisingly easy to obtain; in contrast, the
m1.* instances have for the resource acquisition time
higher expectation (63-90s compared to around 63s) and
variability (much larger boxes). With the exception of
the occasional outlier, both the VM Boot and Release
times are stable and represent about a quarter of Total
each. Table 6 presents basic statistics for single resource
allocation and release. Overall, Amazon EC2 has one
order of magnitude lower single resource allocation
and release durations than GoGrid. From the EC2
resources, the m1.small and m1.large instances have
higher average allocation duration, and exhibit outliers
comparable to those encountered for GoGrid. The re-
source acquisition time of GoGrid resources is highly
variable; here, GoGrid behaves similarly to to grids [5]
and unlike the promise of clouds.

Multiple instances We investigate next the perfor-
mance of requesting the acquisition of multiple resources
(2,4,8,16, and 20) at the same time; a scenario common for
creating homogeneous virtual clusters. When resources
are requested in bulk, we record acquisition and release
times for each resource in the request, separately. Fig-
ure 3 shows the basic statistical properties of the times
recorded for c1.xlarge instances. The expectation and
the variance are both higher for multiple instances than
for a single instance.

4.3.2 Single-Machine Benchmarks

In this set of experiments we measure the raw perfor-
mance of the CPU, I/O, and memory hierarchy using
the Single-Instance benchmarks listed in Section 4.1. We
run each benchmark 10 times and report the average
results.

Compute performance We assess the computational
performance of each instance type using the entire LM-
bench suite. The performance of int and int64 operations,
and of the float and double-precision float operations
is depicted in Figure 4 left and right, respectively. The
GOPS recorded for the floating point and double-precision
float operations is six to eight times lower than the theoretical

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 7

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

m
1

.s
m

a
ll

m
1

.l
a

rg
e

m
1

.x
la

rg
e

c
1

.m
e

d
iu

m

c
1

.x
la

rg
e

m
1

.s
m

a
ll

m
1

.l
a

rg
e

m
1

.x
la

rg
e

c
1

.m
e

d
iu

m

c
1

.x
la

rg
e

m
1

.s
m

a
ll

m
1

.l
a

rg
e

m
1

.x
la

rg
e

c
1

.m
e

d
iu

m

c
1

.x
la

rg
e

m
1

.s
m

a
ll

m
1

.l
a

rg
e

m
1

.x
la

rg
e

c
1

.m
e

d
iu

m

c
1

.x
la

rg
e

D
u

ra
ti
o

n
 [

s
]

 Total Time for
Res. Acquisition

VM Boot Time for
 Res. Acquisition

VM Install Time for
 Res. Acquisition

Total Time for
Res. Release

883 881 685

Quartiles
Median

Mean
Outliers

Fig. 2. Resource acquisition and release overheads
for acquiring single EC2 instances.

 0

 20

 40

 60

 80

 100

 120

2 4 8 16 20 2 4 8 16 20 2 4 8 16 20 2 4 8 16 20

D
u

ra
ti
o

n
 [

s
]

Instance Count Instance Count Instance Count Instance Count

 Total Time for
Res. Acquisition

VM Boot Time for
 Res. Acquisition

VM Install Time for
 Res. Acquisition

Total Time for
Res. Release

Quartiles
Median

Mean
Outliers

Fig. 3. Single-instance resource acquisition
and release overheads when acquiring multiple
c1.xlarge instances at the same time.

 0

 2

 4

 6

 8

 10

m1.small m1.large m1.xlarge c1.medium c1.xlarge

P
e

rf
o

rm
a

n
c
e

 [
G

O
P

S
]

Instance Type

INT-bit INT-add INT-mul INT64-bit INT64-mul

 0

 0.2

 0.4

 0.6

 0.8

 1

m1.small m1.large m1.xlarge c1.medium c1.xlarge

P
e

rf
o

rm
a

n
c
e

 [
G

O
P

S
]

Instance Type

FLOAT-add
FLOAT-mul

FLOAT-bogo
DOUBLE-add

DOUBLE-mul
DOUBLE-bogo

 0

 2

 4

 6

 8

 10

EH.small EH.large GG.small GG.large GG.xlarge Mosso.small Mosso.large

P
e

rf
o

rm
a

n
c
e

 [
G

O
P

S
]

Instance Type

INT-bit INT-add INT-mul INT64-bit INT64-mul

 0

 0.2

 0.4

 0.6

 0.8

 1

EH.small EH.large GG.small GG.large GG.xlarge Mosso.small Mosso.large

P
e

rf
o

rm
a

n
c
e

 [
G

O
P

S
]

Instance Type

FLOAT-add
FLOAT-mul

FLOAT-bogo
DOUBLE-add

DOUBLE-mul
DOUBLE-bogo

Fig. 4. LMbench results (top) for the EC2 instances, and (bottom) for the other instances. Each row depicts
the performance of 32- and 64-bit integer operations in giga-operations per second (GOPS) (left), and of floating
operations with single and double precision (right).

maximum of ECU (4.4 GOPS). A potential reason for this
situation is the over-run or thrashing of the memory
caches by the working sets of other applications sharing
the same physical machines; a study independent from
ours [44] identifies the working set size as a key parame-
ter to consider when placing and migrating applications
on virtualized servers. This situation occurs especially
when the physical machines are shared among users
that are unaware of each other; a previous study [45]
has found that even instances of the same user may be
located on the same physical machine. The performance
evaluation results also indicate that the double-precision
float performance of the c1.* instances, arguably the
most important for scientific computing, is mixed: excel-
lent addition but poor multiplication capabilities. Thus,

as many scientific computing applications use heavily
both of these operations, the user is faced with the diffi-
cult problem of selecting between two wrong choices. Fi-
nally, several double and float operations take longer on
c1.medium than on m1.small. For the other instances,
EH.* and Mosso.* instances have similar performance
for both integer and floating point operations. GG.*
instances have the best float and double-precision per-
formance, and good performance for integer operations,
which suggests the existence of better hardware support
for these operations on these instances.

I/O performance We assess in two steps the I/O
performance of each instance type with the Bonnie
benchmarking suite. The first step is to determine the
smallest file size that invalidates the memory-based I/O

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 8

TABLE 7
The I/O of clouds vs. 2002 [25] and 2007 [26] systems.

Seq. Output Seq. Input Rand.
Instance Char Block ReWr Char Block Input

Type [MB/s] [MB/s] [MB/s] [MB/s] [MB/s] [Seek/s]

m1.small 22.3 60.2 33.3 25.9 73.5 74.4
m1.large 50.9 64.3 24.4 35.9 63.2 124.3
m1.xlarge 57.0 87.8 33.3 41.2 74.5 387.9
c1.medium 49.1 58.7 32.8 47.4 74.9 72.4
c1.xlarge 64.8 87.8 30.0 45.0 74.5 373.9
GG.small 11.4 10.7 9.2 29.2 40.24 39.8
GG.large 17.0 17.5 16.0 34.1 97.5 29.0
GG.xlarge 80.7 136.9 92.6 79.26 369.15 157.5
EH.large 7.1 7.1 7.1 27.9 35.7 177.9
Mosso.sm 41.0 102.7 43.88 32.1 130.6 122.6
Mosso.lg 40.3 115.1 55.3 41.3 165.5 176.7
’02 Ext3 12.2 38.7 25.7 12.7 173.7 -
’02 RAID5 14.4 14.3 12.2 13.5 73.0 -
’07 RAID5 30.9 40.6 29.0 41.9 112.7 192.9

cache, by running the Bonnie suite for thirteen file sizes
in the range 1024 Kilo-binary byte (KiB) to 40 GiB. The
results of this preliminary step have been summarized
in a technical report [46, pp.11-12]; we only summarize
them here. For all instance types, a performance drop
begins with the 100MiB test file and ends at 2GiB,
indicating a capacity of the memory-based disk cache
of 4-5GiB (twice 2GiB). Thus, the results obtained for
the file sizes above 5GiB correspond to the real I/O
performance of the system; lower file sizes would be
served by the system with a combination of memory
and disk operations. We analyze the I/O performance
obtained for files sizes above 5GiB in the second step;
Table 7 summarizes the results. We find that the I/O
performance indicated by Amazon EC2 (see Table 1)
corresponds to the achieved performance for random
I/O operations (column ’Rand. Input’ in Table 7). The

*.xlarge instance types have the best I/O performance
from all instance types. For the sequential operations more
typical to scientific computing all Amazon EC2 instance
types have in general better performance when compared with
similar modern commodity systems, such as the systems
described in the last three rows in Table 7; EC2 may
be using better hardware, which is affordable due to
economies of scale [20].

4.3.3 Multi-Machine Benchmarks

In this set of experiments we measure the performance
delivered by homogeneous clusters formed with Ama-
zon EC2 and GoGrid instances when running the Single-
Job-Multi-Machine benchmarks. For these tests we ex-
ecute 5 times the HPCC benchmark on homogeneous
clusters of 1–16 (1–8) instances on EC2 (GoGrid), and
present the average results.

HPL performance The performance achieved for the
HPL benchmark on various virtual clusters based on the
m1.small and c1.xlarge instance types is depicted
in Figure 5. For the m1.small resources one node was
able to achieve a performance of 1.96 GFLOPS, which
is 44.54% from the peak performance advertised by

TABLE 8
HPL performance and cost comparison for various EC2

and GoGrid instance types.

Peak GFLOPS GFLOPS
Name Perf. GFLOPS /Unit /$1
m1.small 4.4 2.0 2.0 19.6
m1.large 17.6 7.1 1.8 17.9
m1.xlarge 35.2 11.4 1.4 14.2
c1.medium 22.0 3.9 0.8 19.6
c1.xlarge 88.0 50.0 2.5 62.5
GG.large 12.0 8.8 8.8 46.4
GG.xlarge 36.0 28.1 7.0 37.0

Amazon. Then, the performance increased to up to 27.8
GFLOPS for 16 nodes, while the efficiency decreased
slowly to 39.4%. The results for a single c1.xlarge
instance are better: the achieved 49.97 GFLOPS represent
56.78% from the advertised peak performance. However,
while the performance scales when running up to 16
instances to 425.82 GFLOPS, the efficiency decreases to
only 30.24%. The HPL performance loss from one to 16
instances can therefore be expressed as 53.26% which re-
sults in rather bad qualification for HPC applications and
their need for fast inter-node communication. We have
obtained similar results the GG.large and GG.xlarge
instances, as shown in Figure 5. For GG.large instances,
the efficiency decreases quicker than for EC2 instances,
down to 47.33% while achieving 45.44 GFLOPS on eight
instances. The GG.xlarge performed even poorer in our
tests. We further investigate the performance of the HPL
benchmark for different instance types; Table 8 summa-
rizes the results. The efficiency results presented in Fig-
ure 5 and Table 8 place clouds below existing environments
for scientific computing, for which the achieved performance
is 60-70% of the theoretical peak even for demanding real
applications [47], [48], [49].

HPCC performance To obtain the performance of
virtual EC2 and GoGrid clusters we run the HPCC
benchmarks on unit clusters comprising a single instance,
and on 128-core clusters comprising 16 c1.xlarge in-
stances. Table 9 summarizes the obtained results and,
for comparison, results published by HPCC for four
modern and similarly-sized HPC clusters [38]. For HPL,
only the performance of the c1.xlarge is compara-
ble to that of an HPC system. However, for STREAM,
and RandomAccess the performance of the EC2 clusters
is similar or better than the performance of the HPC
clusters. We attribute this mixed behavior mainly to the
network characteristics: first, the EC2 platform has much
higher latency, which has an important negative impact
on the performance of the HPL benchmark; second,
the network is shared among different users, a situa-
tion which often leads to severe performance degrada-
tion [50]. In particular, this relatively low network perfor-
mance means that the ratio between the theoretical peak
performance and achieved HPL performance increases
with the number of instances, making the virtual EC2
clusters poorly scalable. Thus, for scientific computing

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 9

 0

 100

 200

 300

 400

 500

1 2 4 8 16

P
e

rf
o

rm
a

n
c
e

 [
G

F
L

O
P

S
]

Number of Nodes

m1.small c1.xlarge GG.1gig GG.4gig

 0

 25

 50

 75

 100

1 2 4 8 16

E
ff

ic
ie

n
c
y
 [

%
]

Number of Nodes

m1.small c1.xlarge GG.1gig GG.4gig

Fig. 5. The HPL (LINPACK) performance of virtual clusters formed with EC2 m1.small, EC2 c1.xlarge, GoGrid
large, and GoGrid xlarge instances. (left) Throughput. (right) Efficiency.

TABLE 9
The HPCC performance for various platforms. HPCC-x is the system with the HPCC ID x [38]. The machines

HPCC-224 and HPCC-227, and HPCC-286 and HPCC-289 are of brand TopSpin/Cisco and by Intel Endeavor,
respectively. Smaller values are better for the Latency column and worse for the other columns.

Cores or Peak Perf. HPL HPL DGEMM STREAM RandomAccess Latency Bandwidth
Provider, System Capacity [GFLOPS] [GFLOPS] N [GFLOPS] [GBps] [MUPs] [µs] [GBps]

EC2, 1 x m1.small 1 4.40 1.96 13,312 2.62 3.49 11.60 - -
EC2, 1 x m1.large 2 17.60 7.15 28,032 6.83 2.38 54.35 20.48 0.70
EC2, 1 x m1.xlarge 4 35.20 11.38 39,552 8.52 3.47 168.64 17.87 0.92
EC2, 1 x c1.medium 2 22.00 - 13,312 11.85 3.84 46.73 13.92 2.07
EC2, 1 x c1.xlarge 8 88.00 51.58 27,392 44.05 15.65 249.66 14.19 1.49
EC2, 2 x c1.xlarge 16 176.00 84.63 38,656 34.59 15.65 223.54 19.31 1.10
EC2, 4 x c1.xlarge 32 352.00 138.08 54,784 27.74 15.77 280.38 25.38 1.10
EC2, 8 x c1.xlarge 64 704.00 252.34 77,440 3.58 15.89 250.40 35.93 0.97
EC2, 16 x c1.xlarge 128 1,408.00 425.82 109,568 0.23 16.38 207.06 45.20 0.75
EC2, 16 x m1.small 16 70.40 27.80 53,376 4.36 11.95 77.83 68.24 0.10
GoGrid, 1 x GG.large 1 12.00 8.805 10,240 10.01 2.88 17.91 - -
GoGrid, 4 x GG.large 4 48.00 24.97 20,608 10.34 20.17 278.80 110.11 0.06
GoGrid, 8 x GG.large 8 96.00 45.436 29,184 10.65 20.17 351.68 131.13 0.07
GoGrid, 1 x GG.xlarge 3 36.00 28.144 20,608 10.82 45.71 293.30 16.96 0.97
GoGrid, 4 x GG.xlarge 12 144.00 40.03 41,344 11.31 19.95 307.64 62.20 0.24
GoGrid, 8 x GG.xlarge 24 288.00 48.686 58,496 18.00 20.17 524.33 55.54 1.33
HPCC-227, TopSpin/Cisco 16 102.40 55.23 81,920 4.88 2.95 10.25 6.81 0.66
HPCC-224, TopSpin/Cisco 128 819.20 442.04 231,680 4.88 2.95 10.25 8.25 0.68
HPCC-286, Intel Endeavor 16 179.20 153.25 60,000 10.50 5.18 87.61 1.23 1.96
HPCC-289, Intel Endeavor 128 1,433.60 1,220.61 170,000 10.56 5.17 448.31 2.78 3.47

applications similar to HPL the virtual EC2 clusters
can lead to an order of magnitude lower performance
for large system sizes (1024 cores and higher). An al-
ternative explanation may be the working set size of
HPL, which would agree with the findings of another
study on resource virtualization [44]. The performance
of the GoGrid clusters with the single core instances is
as expected, but we observe scalability problems with
the 3 core GG.xlarge instances. In comparison with
previously reported results, the DGEMM performance
of m1.large (c1.medium) instances is similar to that
of Altix4700 (ICE) [29], and the memory bandwidth of
Cray X1 (2003) is several times faster than that of the
fastest cloud resource currently available [30].

4.3.4 Performance Stability

An important question related to clouds is Is the perfor-
mance stable? (Are our results repeatable?) Previous work
on virtualization has shown that many virtualization
packages deliver the same performance under identical
tests for virtual machines running in an isolated envi-
ronment [51]. However, it is unclear if this holds for

 0

 10000

 20000

 30000

 40000

 50000

2
8
2

10
2

15
2

20
2

25
2

8
2

10
2

15
2

20
2

25
2

8
2

10
2

15
2

20
2

25
2

8
2

10
2

15
2

20
2

25

P
e
rf

o
rm

a
n
c
e
 [
M

B
p
s
]

Working Set Sizes per Instance Type

m1.xlarge GG.xlarge EH.small Mosso.large

Range
Median

Mean

Fig. 6. Performance stability of cloud instance types with
the CacheBench benchmark with Rd-Mod-Wr operations.

virtual machines running in a large-scale cloud (shared)
environment.

To get a first picture of the side-effects caused by
the sharing with other users the same physical re-
source, we have assessed the stability of different clouds
by running the LMBench (computation and OS) and
CacheBench (I/O) benchmarks multiple times on the
same type of virtual resources. For these experiments
we have used m1.xlarge, GG.xlarge, EH.small, and

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 10

Mosso.large resources. Figure 6 summarizes the re-
sults for one example benchmark from the CacheBench
suite, Rd-Mod-Wr. The GG.large and EH.small types
have important differences between the min, mean, and
max performance even for medium working set sizes,
such as 1010B. The best-performer in terms of computa-
tion, GG.xlarge, is unstable; this makes cloud vendor
selection an even more difficult problem. We have per-
formed a longer-term investigation in other work [52].

5 CLOUDS VS . OTHER SCIENTIFIC COMPUT-
ING INFRASTRUCTURES

In this section we present a comparison between clouds
and other scientific computing infrastructures using both
complete workloads, and MTC workloads extracted
from the complete workloads.

5.1 Method

We use trace-based simulation to compare clouds with
scientific computing infrastructures. To this end, we first
extract the performance characteristics from long-term
workload traces of scientific computing infrastructures;
we call these infrastructures source environments. Then,
we compare these characteristics with those of a cloud
execution.

System model We define two performance models of
clouds, which differ by the factor that jobs are slowed
down. The cloud with source-like performance is a theoreti-
cal cloud environment that comprises the same resources
as the source environment. In this cloud model, the
runtimes of jobs executed in the cloud are equal to those
recorded in the source environment’s workload traces
(no slowdown). This model is akin to having a grid being
converted into a cloud of identical performance and
thus it is useful for assessing the theoretical performance
of future and more mature clouds. However, as we
have shown in Section 4, in real clouds performance
is below the theoretical peak, and for parallel jobs the
achieved efficiency is lower than that achieved in grids.
Thus, we introduce the second model, the clouds with
real performance, in which the runtimes of jobs executed
in the cloud are extended by a factor, which we call
the slowdown factor, derived from the empirical evalu-
ation presented in Section 4. The system equivalence
between clouds and source environments is assumed
in this model, and ensured in practice by the complete
system virtualization [53] employed by all the clouds
investigated in this work.

Job execution model For job execution we assume
exclusive resource use: for each job in the trace, the
necessary resources are acquired from the cloud, then
released after the job has been executed. We relax this
assumption in Section 5.3.4.

System workloads To compare the performance of
clouds with other infrastructures, we use both com-
plete workloads, and MTC workloads extracted from

the complete workloads using the method described in
Section 3.1. Finally we evaluate the performance and the
cost of executing MTC workloads in clouds with real
performance for various slowdown factors.

Performance metrics We measure the performance of
all environments using the three traditional metrics [7]:
wait time (WT), response time (ReT), and bounded slowdown
(BSD))–the ratio between the job response time in the
real vs. an exclusively-used environment, with a bound
that eliminates the bias towards short jobs. The BSD is
expressed as BSD = max(1, ReT/max(10, ReT − WT)),
where 10 is the bound that eliminates the bias of jobs
with runtime below 10 seconds. We compute for each job
the three metrics and report for a complete workload the
average values for these metrics, AWT, AReT, and ABSD,
respectively.

Cost metrics We report for the two cloud models the
total cost of workload execution, defined as the number
of instance-hours used to complete all the jobs in the
workload. This value can be converted directly into the
cost for executing the whole workload for $/CPU-hour
and similar pricing models, such as Amazon EC2’s.

5.2 Experimental Setup

System setup We use the DGSIM simulator [18] to an-
alyze the performance of cloud environments. We have
extended DGSIM with the two cloud models, and used
it to simulate the execution of real scientific computing
workloads on cloud computing infrastructures. To model
the slowdown of jobs when using clouds with real
performance, we have used different slowdown factors.
Specifically, single-processor jobs are slowed-down by
a factor of 7, which is the average performance ratio
between theoretical and achieved performance analyzed
in Section 4.3.2, and parallel jobs are slowed-down by a
factor up to 10 depending on the job size, due to the HPL
performance degradation with job size described in Sec-
tion 4.3.3. In Section 5.3.3, we also present the results of
our performance evaluation by using various slowdown
factors with the cloud real performance model.

Workload setup We use as input workload the ten
workload traces described in Section 3. The traces Grid3
and LCG do not include the job waiting time informa-
tion; only for these two traces we set the waiting time for
all jobs to zero, which favors these two grids in compar-
ison with clouds. The wait time of jobs executed in the
cloud (also their AWT) is set to the resource acquisition
and release time obtained from real measurements (see
Section 4.3.1).

Performance analysis tools We use the Grid Work-
loads Archive tools [13] to extract the performance met-
rics from the workload traces of grids and PPIs. We
extend these tools to also analyze cloud performance
metrics such as cost.

5.3 Results

Our experiments follow four main aspects: performance
for complete and MTC-only workloads, the effect of

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 11

cloud performance changes on performance and cost
metrics, and the performance-cost-security trade-off. We
present the experimental results for each main aspect, in
turn.

5.3.1 Complete Workloads

We compare the execution in source environments
(grids, PPIs, etc.) and in clouds of the ten workload traces
described in Table 2. Table 10 summarizes the results of
this comparison, on which we comment below.

An order of magnitude better performance is needed
for clouds to be useful for daily scientific computing.
The performance of the cloud with real performance
model is insufficient to make a strong case for clouds
replacing grids and PPIs as a scientific computing in-
frastructure. The response time of these clouds is higher
than that of the source environment by a factor of 4-10.
In contrast, the response time of the clouds with source-
like performance is much better, leading in general to
significant gains (up to 80% faster average job response
time) and at worst to 1% higher AWT (for traces of Grid3
and LCG, which are assumed conservatively to always
have zero waiting time1). We conclude that if clouds
would offer an order of magnitude higher performance
than the performance observed in this study, they would
form an attractive alternative for scientific computing,
not considering costs.

Price-wise, clouds are reasonably cheap for scientific
computing, if the usage and funding scenarios allow
it (but usually they do not). Looking at costs, and
assuming the external operational costs in the cloud
to be zero, one million EC2-hours equate to $100,000.
Thus, to execute the total workload of RAL over one
year (12 months) would cost $4,029,000 on Amazon EC2.
Similarly, the total workload of DAS-2 over one year
and a half (18 months) would cost $166,000 on Amazon
EC2. Both these sums are much lower than the cost of
these infrastructures, which includes resource acquisi-
tion, operation, and maintenance. To better understand
the meaning of these sums, consider the scenario (disad-
vantageous for the clouds) in which the original systems
would have been sized to accommodate strictly the
average system load, and the operation and maintenance
costs would have been zero. Even in this scenario using
Amazon EC2 is cheaper. We attribute this difference to
the economy of scale discussed in a recent study [20]:
the price of the basic operations in a very large data
center can be an order of magnitude lower than in a
grid or data center of regular size. However, despite
the apparent cost saving it is not clear that the transi-
tion to clouds would have been possible for either of
these grids. Under the current performance exhibited by
clouds, the use of EC2 would have resulted in response
times three to four times higher than in the original

1. Although we realize the Grid3 and LCG grids do not have zero
waiting time, we follow a conservative approach in which we favor
grids against clouds, as the latter are the new technology.

system, which would have been in conflict with the
mission of RAL as a production environment. A similar
concern can be formulated for DAS-2. Moreover, DAS-
2 is specifically targeting research in computer science,
and its community would not have been satisfied to
use commodity resources instead of a state-of-the-art en-
vironment comprising among others high-performance
lambda networks; other new resource types, such as
GPUs and Cell processors, are currently available in
grids but not in clouds. Looking at the funding scenario,
it is not clear if finance could have been secured for
virtual resources; one of the main outcomes of the long-
running EGEE project is the creation of a European Grid
infrastructure. Related concerns have been formulated
elsewhere [20].

Clouds are now a viable alternative for short
deadlines. A low and steady job wait time leads to
much lower (bounded) slow-down for any cloud model,
when compared to the source environment. The average
bounded slowdown (ABSD, see Section 5.1) observed in
real grids and PPIs is for our traces between 11 and over
500!, but below 3.5 and even 1.5 for the cloud models
with low and with high utilization. The meaning of
the ABSD metric is application-specific, and the actual
ABSD value may seem to over-emphasize the difference
between grids and clouds. However, the presence of
high and unpredictable wait times even for short jobs,
captured here by the high ABSD values, is one of the
major concerns in adopting shared infrastructures such
as grids [5], [54]. We conclude that cloud is already a
viable alternative for scientific computing projects with
tight deadline and few short-running jobs remaining, if
the project has the needed funds.

5.3.2 MTC Part of the Complete Workloads
We evaluate the performance of clouds using only the
MTC workloads extracted from the complete workloads
using the method described in Section 3.1. We assume
that a user is an MTC user if B ≥ 1, 000 and J ≥ 10, 000;
T is considered to be the duration of the workload trace.
Table 11 summarizes the results of our evaluation. The
results are similar to the results obtained for complete
workloads, in the previous section. We observe that
the response time of clouds with real performance is
higher than that of grids/PPIs by a factor of 2-5. Hence,
although the cost of using clouds seems reasonable, sig-
nificant performance improvement is needed for clouds
to be a viable alternative to grids/PPIs for MTC based
scientific computing. In addition, similar to results for
complete workloads, we observe low and steady wait
times hence lower ABSD, and reduced time to solution
which makes clouds attractive for MTC based scientific
computing.

5.3.3 The Effect of the Cloud Slowdown Factor on Per-
formance and Cost
The slowdown factor is the factor by which the job
runtime changes between the source environment and

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 12
TABLE 10

The results of the comparison between workload execution in source environments (grids, PPIs, etc.) and in clouds.
The “-” sign denotes missing data in the original traces. For the two Cloud models AWT=80s (see text). The total cost

for the two Cloud models is expressed in millions of CPU-hours.
Source env. (Grid/PPI) Cloud (real performance) Cloud (source performance)

AWT AReT ABSD AReT ABSD Total Cost AReT ABSD Total Cost
Trace ID [s] [s] (10s) [s] (10s) [CPU-h,M] [s] (10s) [CPU-h,M]
DAS-2 432 802 11 2,292 2.39 2 450 2 1.19
RAL 13,214 27,807 68 131,300 1 40 18,837 1 6.39
GLOW 9,162 17,643 55 59,448 1 3 8,561 1 0.60
Grid3 - 7,199 - 50,470 3 19 7,279 3 3.60
SharcNet 31,017 61,682 242 219,212 1 73 31,711 1 11.34
LCG - 9,011 - 63,158 1 3 9,091 1 0.62
CTC SP2 25,748 37,019 78 75,706 1 2 11,351 1 0.30
SDSC SP2 26,705 33,388 389 46,818 2 1 6,763 2 0.16
LANL O2K 4,658 9,594 61 37,786 2 1 5,016 2 0.26
SDSC DS 32,271 33,807 516 57,065 2 2 6,790 2 0.25

 0

 10

 20

 0.1 1 2 3 4 5 6 7
 0

 0.5

 1

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 [

m
]

T
o

ta
l
C

o
s
t

[C
p

u
-H

,M
]

Slowdown Factor

Avg. Response Time
Avg. Cost

 0

 10

 20

 2 3 4 5 6 7 8 9 10
 0

 0.5

 1

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 [

m
]

T
o

ta
l
C

o
s
t

[C
p

u
-H

,M
]

Slowdown Factor

Avg. Response Time
Avg. Cost

Fig. 7. Performance and cost of using cloud resources for MTC workloads with various slowdown factors for sequential
jobs (left), and parallel jobs(right) using the DAS-2 trace.

the cloud (see Section 5.1). In previous sections, we have
used a slowdown factor of 7 for sequential jobs, and
10 for parallel jobs for modeling clouds with real per-
formance. We now evaluate the performance of clouds
with real performance using only the MTC workloads
with various slowdown factors for both sequential and
parallel jobs. Similar to previous section, when extracting
the MTC workload from complete workloads we assume
that a user is an MTC user if B ≥ 1, 000 and J ≥ 10, 000.

Figure 7 shows the average response time and cost
of clouds with real performance with various slowdown
factors for sequential (left) and parallel (right) jobs using
the DAS-2 trace. As the slowdown factor increases, we
observe a steady but slow increase in cost and response
time for both sequential and parallel jobs. This is ex-
pected: the higher the response time, the longer a cloud
resource is used, increasing the total cost. The sequential
jobs dominate the workload both in number of jobs and
in consumed CPU time, and their average response time
increases linearly with the performance slowdown; thus,

TABLE 12
Relative strategy performance: resource bulk allocation
(S2) vs. resource acquisition and release per job (S1).
Only performance differences above 5% are shown.

Relative Cost DAS-2 Grid3 LCG LANL O2K
|S2−S1|

S1
× 100 [%] 30.2 11.5 9.3 9.1

improving the performance of clouds for sequential jobs
should be the first priority of cloud providers.

5.3.4 Performance and Security vs. Cost
Currently, clouds lease resources but do not offer a
resource management service that can use the leased
resources. Thus, the cloud adopter may use any of the
resource management middleware from grids and PPIs;
for a review of grid middleware we refer to our recent
work [55]. We have already introduced the basic con-
cepts of cloud resource management in Section 4.2, and
explored the potential of a cloud resource management
strategy (strategy S1) for which resources are acquired

TABLE 11
The results of the comparison between workload execution in source environments (grids, PPIs, etc.) and in clouds

with only the MTC part extracted from the complete workloads. The LCG, CTC SP2, SDSC SP2, and SDSC DS
traces are not presented, as they do not have enough MTC users (the criterion is described in text).

Source env. (Grid/PPI) Cloud (real performance) Cloud (source performance)
AWT AReT ABSD AReT ABSD Total Cost AReT ABSD Total Cost

Trace ID [s] [s] (10s) [s] (10s) [CPU-h,M] [s] (10s) [CPU-h,M]
DAS-2 70 243 3 776 2 0.65 252 2 0.61
RAL 4,866 18,694 24 68,847 1 6.60 17,272 1 1.80
GLOW 6,062 13,396 41 29,416 1 1.40 7,413 1 0.42
Grid3 - 7,422 - 29,769 4 10.61 7,502 4 3.30
SharcNet 10,387 30,092 6 141,510 1 7.10 20,182 1 1.09
LANL O2K 635.78 1,715 4 94 2 0.10 1,171 1 <0.01

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 13

and released for each submitted job in Section 5. This
strategy has good security and resource setup flexibility,
but may incur high time and cost overheads, as resources
that could otherwise have been reused are released as
soon as the job completes. As an alternative, we investi-
gate now the potential of a cloud resource management
strategy in which resources are allocated in bulk for all
users, and released only when there is no job left to be
served (strategy S2). To compare these two cloud resource
management strategies, we use the experimental setup
described in Section 5.2; Table 12 shows the obtained
results. The maximum relative cost difference between
the strategies is for these traces around 30% (the DAS-
2 trace); in three cases, around 10% of the total cost is
to be gained. Given these cost differences, we raise as a
future research problem optimizing the application execution
as a cost-performance-security trade-off.

6 RELATED WORK

In this section we review related work from three areas:
clouds, virtualization, and system performance evalua-
tion. Our work also comprises the first characterization
of the MTC component in existing scientific computing
workloads.

Performance Evaluation of Clouds and Virtualized
Environments There has been a recent spur of research
activity in assessing the performance of virtualized re-
sources, in cloud computing environments [9], [10], [11],
[56], [57] and in general [8], [24], [51], [58], [59], [60],
[61]. In contrast to this body of previous work, ours is
different in scope: we perform extensive measurements
using general purpose and high-performance computing
benchmarks to compare several clouds, and we compare
clouds with other environments based on real long-
term scientific computing traces. Our study is also much
broader in size: we perform in this work an evaluation
using over 25 individual benchmarks on over 10 cloud
instance types, which is an order of magnitude larger
than previous work (though size does not simply add to
quality).

Performance studies using general purpose bench-
marks have shown that the overhead incurred by virtu-
alization can be below 5% for computation [24], [51] and
below 15% for networking [24], [58]. Similarly, the per-
formance loss due to virtualization for parallel I/O and
web server I/O has been shown to be below 30% [62]
and 10% [63], [64], respectively. In contrast to these, our
work shows that virtualized resources obtained from
public clouds can have a much lower performance than
the theoretical peak.

Recently, much interest for the use of virtualization
has been shown by the HPC community, spurred by two
seminal studies [8], [65] that find virtualization overhead
to be negligible for compute-intensive HPC kernels and
applications such as the NAS NPB benchmarks; other
studies have investigated virtualization performance for
specific HPC application domains [61], [66], or for mix-
tures of Web and HPC workloads running on virtualized

(shared) resources [67]. Our work differs significantly
from these previous approaches in target (clouds as black
boxes vs. owned and controllable infrastructure) and in
size. For clouds, the study of performance and cost of
executing a scientific workflow, Montage, in clouds [9]
investigates cost-performance trade-offs between clouds
and grids, but uses a single application on a single
cloud, and the application itself is remote from the
mainstream HPC scientific community. Also close to our
work is the seminal study of Amazon S3 [10], which
also includes a performance evaluation of file transfers
between Amazon EC2 and S3. Our work complements
this study by analyzing the performance of Amazon
EC2, the other major Amazon cloud service; we also
test more clouds and use scientific workloads. Several
small-scale performance studies of Amazon EC2 have
been recently conducted: the study of Amazon EC2
performance using the NPB benchmark suite [11] or
selected HPC benchmarks [68], the early comparative
study of Eucalyptus and EC2 performance [56], the study
of file transfer performance between Amazon EC2 and
S3 [69], etc. An early comparative study of the Dawn-
ingCloud and several operational models [12] extends
the comparison method employed for Eucalyptus [56],
but uses job emulation instead of job execution. Our
performance evaluation results extend and complement
these previous findings, and gives more insights into the
performance of EC2 and other clouds.

Other (Early) Performance Evaluation Much work
has been put into the evaluation of novel supercom-
puters [27], [29], [30], [31], [47], [48] and non-traditional
systems [5], [32], [37], [49], [70] for scientific computing.
We share much of the used methodology with previous
work; we see this as an advantage in that our results are
readily comparable with existing results. The two main
differences between this body of previous work and
ours are that we focus on a different platform (that is,
clouds) and that we target a broader scientific computing
community (e.g., also users of grids and small clusters).

Other Cloud Work Recent work [12], [71] has consid-
ered running mixtures of MTC with other workloads in
cloud-like environments. For this direction of research,
our findings can be seen as further motivation and
source of realistic setup parameters.

7 CONCLUSION AND FUTURE WORK

With the emergence of cloud computing as a paradigm
in which scientific computing can done exclusively on
resources leased only when needed from big data cen-
ters, e-scientists are faced with a new platform option.
However, the initial target workloads of clouds does
not match the characteristics of MTC-based scientific
computing workloads. Thus, in this paper we seek to
answer the research question Is the performance of clouds
sufficient for MTC-based scientific computing? To this end,
we first investigate the presence of an MTC component
in existing scientific computing workloads, and find that

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 14

this presence is significant both in number of jobs and in
resources consumed. Then, we perform an empirical per-
formance evaluation of four public computing clouds,
including Amazon EC2, one of the largest commercial
clouds currently in production. Our main finding here
is that the compute performance of the tested clouds
is low. Last, we compare the performance and cost of
clouds with those of scientific computing alternatives
such as grids and parallel production infrastructures.
We find that, while current cloud computing services
are insufficient for scientific computing at large, they
may still be a good solution for the scientists who need
resources instantly and temporarily.

We will extend this work with additional analysis of
the other services offered by clouds, and in particular
storage and network; how do they respond to to the
combined stress of workloads with different charac-
teristics and requirements that the diverse population
of cloud users are supposed to incur in the future?
We will also extend the performance evaluation with
other real and synthetic applications, toward creating a
performance database for the scientific community.

Standing the test of time. The usefulness of our
empirical evaluation part of this work (Section 4.3) may
be reduced with the commercialization of new cloud
services. For example, since mid-July 2010 a new com-
mercial compute service by Amazon, the Cluster Com-
pute instances, is targeted at HPC users. The increase
in performance for this new service versus the Amazon
instances tested in our work can be up to a factor of
8.5 [72], which is similar to the performance gap found
by our performance evaluation. The difference in perfor-
mance for the Cluster Compute instances cannot be ex-
plained only by the superior resource performance—the
compute performance of the Cluster Compute instances
is, for example, only a factor of 1.5 times better than that
of the best-performing instance tested in our study. An-
other possible contributor may be that the new instance
type offers dedicated infrastructure (that is, compute
and network resources). Thus, these cloud instances are
operated in a “shared-nothing” mode; historically, such
clusters tend to have low utilization [73], which in turn
threatens to cancel out the commercial benefits. Our
performance evaluation results remain representative for
clouds that multiplex their resources among their users,
at least until an isolation technology is able to limit
access to compute, memory, network, and I/O resources
with low overhead; recent yet early attempts in this di-
rection, such as the Linux containers [74], are promising.
Our performance evaluation may also be indicative, as
a cross-section analysis of the offerings available on the
market, for the differences between the cloud operators
present on the market at any given time.

Acknowledgements This work is partially funded by
the European Union under grant agreement number
261585/SHIWA Project.

REFERENCES

[1] Amazon Inc., “Amazon Elastic Compute Cloud (Amazon EC2),”
Dec 2008, [Online] Available: http://aws.amazon.com/ec2/.

[2] GoGrid, “GoGrid cloud-server hosting,” Dec 2008, [Online] Avail-
able: http://www.gogrid.com.

[3] A. Iosup, O. O. Sonmez, S. Anoep, and D. H. J. Epema, “The
performance of bags-of-tasks in large-scale distributed systems,”
in HPDC. ACM, 2008, pp. 97–108.

[4] I. Raicu, Z. Zhang, M. Wilde, I. T. Foster, P. H. Beckman, K. Iskra,
and B. Clifford, “Toward loosely coupled programming on petas-
cale systems,” in SC. ACM, 2008, p. 22.

[5] A. Iosup, C. Dumitrescu, D. H. J. Epema, H. Li, and L. Wolters,
“How are real grids used? The analysis of four grid traces and
its implications,” in GRID. IEEE, 2006, pp. 262–269.

[6] U. Lublin and D. G. Feitelson, “Workload on parallel supercom-
puters: modeling characteristics of rigid jobs,” J.Par.&Distr.Comp.,
vol. 63, no. 11, pp. 1105–1122, 2003.

[7] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik,
and P. Wong, “Theory and practice in parallel job scheduling,” in
JSSPP, ser. LNCS, vol. 1291. Springer-Verlag, 1997, pp. 1–34.

[8] L. Youseff, R. Wolski, B. C. Gorda, and C. Krintz, “Paravirtualiza-
tion for HPC systems,” in ISPA Workshops, ser. LNCS, vol. 4331.
Springer-Verlag, 2006, pp. 474–486.

[9] E. Deelman, G. Singh, M. Livny, J. B. Berriman, and J. Good, “The
cost of doing science on the cloud: the Montage example,” in SC.
IEEE/ACM, 2008, p. 50.

[10] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel,
“Amazon S3 for science grids: a viable solution?” in DADC
’08: Proceedings of the 2008 international workshop on Data-aware
distributed computing. ACM, 2008, pp. 55–64.

[11] E. Walker, “Benchmarking Amazon EC2 for HP Scientific Com-
puting,” Login, vol. 33, no. 5, pp. 18–23, Nov 2008.

[12] L. Wang, J. Zhan, W. Shi, Y. Liang, and L. Yuan, “In cloud, do mtc
or htc service providers benefit from the economies of scale?” in
SC-MTAGS, 2009.

[13] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters,
and D. Epema, “The Grid Workloads Archive,” Future Generation
Comp. Syst., vol. 24, no. 7, pp. 672–686, 2008.

[14] D. Thain, J. Bent, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
and M. Livny, “Pipeline and batch sharing in grid workloads,” in
HPDC. IEEE, 2003, pp. 152–161.

[15] S. Ostermann, A. Iosup, R. Prodan, T. Fahringer, and D. H. J.
Epema, “On the characteristics of grid workflows,” in CGIW, 2008,
pp. 431–442.

[16] The Parallel Workloads Archive Team , “The parallel workloads
archive logs,” Jan. 2009, [Online]. Available: http://www.cs.huji.
ac.il/labs/parallel/workload/logs.html.

[17] Y.-S. Kee, H. Casanova, and A. A. Chien, “Realistic modeling and
svnthesis of resources for computational grids,” in SC, 2004, p. 54.

[18] A. Iosup, O. O. Sonmez, and D. H. J. Epema, “DGSim: Compar-
ing grid resource management architectures through trace-based
simulation,” in Euro-Par, ser. LNCS, vol. 5168. Springer-Verlag,
2008, pp. 13–25.

[19] L. Youseff, M. Butrico, and D. Da Silva, “Towards a unified
ontology of cloud computing,” in Proc. of the Grid Computing
Environments Workshop (GCE08), Nov 2008.

[20] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “Above the clouds: A Berkeley view of cloud comput-
ing,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28, Feb 2009.

[21] R. Prodan and S. Ostermann, “A survey and taxonomy of infras-
tructure as a service and web hosting cloud providers,” in GRID,
2009, pp. 1–10.

[22] A. Iosup, M. Jan, O. O. Sonmez, and D. H. J. Epema, “The
characteristics and performance of groups of jobs in grids,” in
Euro-Par, 2007, pp. 382–393.

[23] R. H. Saavedra and A. J. Smith, “Analysis of benchmark char-
acteristics and benchmark performance prediction,” ACM Trans.
Comput. Syst., vol. 14, no. 4, pp. 344–384, 1996.

[24] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in SOSP. ACM, 2003, pp. 164–177.

[25] A. Kowalski, “Bonnie - file system benchmarks,” Jefferson Lab,”
Tech.Rep., Oct 2002, [Online] Available: http://cc.jlab.org/docs/
scicomp/benchmark/bonnie.html.

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 15

[26] M. Babcock, “XEN benchmarks, Tech.Rep.,” Aug 2007, [Online]
Available: mikebabcock.ca/linux/xen/.

[27] J. S. Vetter, S. R. Alam, T. H. D. Jr., M. R. Fahey, P. C. Roth, and
P. H. Worley, “Early evaluation of the Cray XT3,” in IPDPS, 2006.

[28] P. Luszczek, D. H. Bailey, J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi, “S12 - The HPC Challenge
(HPCC) benchmark suite.” in SC. ACM, 2006, p. 213.

[29] S. Saini, D. Talcott, D. C. Jespersen, M. J. Djomehri, H. Jin, and
R. Biswas, “Scientific application-based performance comparison
of SGI Altix 4700, IBM POWER5+, and SGI ICE 8200 supercom-
puters,” in SC. IEEE/ACM, 2008, p. 7.

[30] T. H. Dunigan, M. R. Fahey, J. B. W. III, and P. H. Worley, “Early
evaluation of the Cray X1,” in SC. ACM, 2003, p. 18.

[31] S. R. Alam, R. F. Barrett, M. Bast, M. R. Fahey, J. A. Kuehn,
C. McCurdy, J. Rogers, P. C. Roth, R. Sankaran, J. S. Vetter, P. H.
Worley, and W. Yu, “Early evaluation of IBM BlueGene/P,” in SC.
ACM, 2008, p. 23.

[32] R. Biswas, M. J. Djomehri, R. Hood, H. Jin, C. C. Kiris, and
S. Saini, “An application-based performance characterization of
the Columbia Supercluster,” in SC. IEEE, 2005, p. 26.

[33] L. McVoy and C. Staelin, “LMbench - tools for performance anal-
ysis,” [Online] Available: http://www.bitmover.com/lmbench/,
Dec 2008.

[34] T. Bray, “Bonnie,” 1996, [Online] Available: http://www.
textuality.com/bonnie/, Dec 2008.

[35] P. J. Mucci and K. S. London, “Low level architectural character-
ization benchmarks for parallel computers,” U. Tennessee, Tech.
Rep. UT-CS-98-394, 1998.

[36] N. Yigitbasi, A. Iosup, S. Ostermann, and D. Epema, “C-meter:
A framework for performance analysis of computing clouds,” in
Proceedings of CCGRID’09, 2009, pp. 472–477.

[37] A. Iosup and D. H. J. Epema, “GrenchMark: A framework for
analyzing, testing, and comparing grids,” in CCGrid, 2006, pp.
313–320.

[38] The HPCC Team , “HPCChallenge results,” Jan. 2009, [Online].
Available: http://icl.cs.utk.edu/hpcc/hpcc results.cgi.

[39] J. Worringen and K. Scholtyssik, “MP-MPICH: User documenta-
tion & technical notes,” Jun 2002.

[40] J. Dongarra et al., “Basic Linear Algebra Subprograms Technical
Forum Standard,” Int’l. J. of High Perf. App. and Supercomputing,
vol. 16, no. 1, pp. 1–111, 2002.

[41] K. Goto and R. A. v. d. Geijn, “Anatomy of high-performance
matrix multiplication,” ACM Trans. Math. Softw., vol. 34, no. 3,
pp. 1–25, 2008.

[42] Advanced Clustering Tech., “Linpack problem size analyzer,” Dec
2008, [Online] Available: http://www.advancedclustering.com/.

[43] J. Dongarra, P. Luszczek, and A. Petitet, “The linpack benchmark:
past, present and future,” Concurrency and Computation: Practice
and Experience, vol. 15, no. 9, pp. 803–820, 2003.

[44] A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic place-
ment of hpc applications,” in ICS. ACM, 2008, pp. 175–184.

[45] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environ-
ments,” in OSDI. USENIX, 2008, pp. 29–42.

[46] S. Ostermann, A. Iosup, N. M. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “An early performance analysis of cloud comput-
ing services for scientific computing,” TU Delft, Tech. Rep., Dec
2008, [Online] Available: http://pds.twi.tudelft.nl/reports/2008/
PDS-2008-006.pdf.

[47] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing
supercomputer performance: Achieving optimal performance on
the 8,192 processors of ASCI Q,” in SC. ACM, 2003, p. 55.

[48] D. J. Kerbyson, A. Hoisie, and H. J. Wasserman, “A performance
comparison between the Earth Simulator and other terascale
systems on a characteristic ASCI workload,” Concurrency - Practice
and Experience, vol. 17, no. 10, pp. 1219–1238, 2005.

[49] F. Petrini, G. Fossum, J. Fernández, A. L. Varbanescu, M. Kistler,
and M. Perrone, “Multicore surprises: Lessons learned from opti-
mizing Sweep3D on the Cell Broadband Engine,” in IPDPS. IEEE,
2007, pp. 1–10.

[50] R. H. Arpaci-Dusseau, A. C. Arpaci-Dusseau, A. Vahdat, L. T.
Liu, T. E. Anderson, and D. A. Patterson, “The interaction of
parallel and sequential workloads on a network of workstations,”
in SIGMETRICS, 1995, pp. 267–278.

[51] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne,
and J. N. Matthews, “Xen and the art of repeated research,” in
USENIX ATC, 2004, pp. 135–144.

[52] A. Iosup, N. M. Yigitbasi, and D. Epema, “On the perfor-
mance variability of production cloud services,” TU Delft, Tech.
Rep. PDS-2010-002, Jan 2010, [Online] Available: http://pds.twi.
tudelft.nl/reports/2010/PDS-2010-002.pdf.

[53] T. Killalea, “Meet the virts,” Queue, vol. 6, no. 1, pp. 14–18, 2008.
[54] D. Nurmi, R. Wolski, and J. Brevik, “Varq: virtual advance reser-

vations for queues,” in HPDC. ACM, 2008, pp. 75–86.
[55] A. Iosup, D. H. J. Epema, T. Tannenbaum, M. Farrellee, and

M. Livny, “Inter-operating grids through delegated matchmak-
ing,” in SC. ACM, 2007, p. 13.

[56] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus open-source
cloud-computing system,” 2008, uCSD Tech.Rep. 2008-10. [On-
line] Available: http://eucalyptus.cs.ucsb.edu/.

[57] B. Quétier, V. Néri, and F. Cappello, “Scalability comparison of
four host virtualization tools,” J. Grid Comput., vol. 5, pp. 83–98,
2007.

[58] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel, “Diagnosing performance overheads in the Xen
virtual machine environment,” in VEE. ACM, 2005, pp. 13–23.

[59] N. Sotomayor, K. Keahey, and I. Foster, “Overhead matters: A
model for virtual resource management,” in VTDC. IEEE, 2006,
pp. 4–11.

[60] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott,
“Proactive fault tolerance for HPC with Xen virtualization,” in
ICS. ACM, 2007, pp. 23–32.

[61] L. Youseff, K. Seymour, H. You, J. Dongarra, and R. Wolski, “The
impact of paravirtualized memory hierarchy on linear algebra
computational kernels and software,” in HPDC. ACM, 2008,
pp. 141–152.

[62] W. Yu and J. S. Vetter, “Xen-based HPC: A parallel I/O perspec-
tive,” in CCGrid. IEEE, 2008, pp. 154–161.

[63] L. Cherkasova and R. Gardner, “Measuring CPU overhead for
I/O processing in the Xen virtual machine monitor,” in USENIX
ATC, 2005, pp. 387–390.

[64] U. F. Minhas, J. Yadav, A. Aboulnaga, and K. Salem, “Database
systems on virtual machines: How much do you lose?” in ICDE
Workshops. IEEE, 2008, pp. 35–41.

[65] W. Huang, J. Liu, B. Abali, and D. K. Panda, “A case for high
performance computing with virtual machines,” in ICS. ACM,
2006, pp. 125–134.

[66] L. Gilbert, J. Tseng, R. Newman, S. Iqbal, R. Pepper, O. Celebioglu,
J. Hsieh, and M. Cobban, “Performance implications of virtual-
ization and hyper-threading on high energy physics applications
in a grid environment,” in IPDPS. IEEE, 2005.

[67] J. Zhan, L. Wang, B. Tu, Y. Li, P. Wang, W. Zhou, and D. Meng,
“Phoenix cloud: Consolidating different computing loads on
shared cluster system for large organization,” in CCA-08 Posters,
2008, pp. 7–11.

[68] C. Evangelinos and C. N. Hill, “Cloud computing for paral-
lel scientific hpc applications: Feasibility of running coupled
atmosphere-ocean climate models on amazons ec2,” in CCA-08,
2008, pp. 1–6.

[69] M.-E. Bgin, B. Jones, J. Casey, E. Laure, F. Grey, C. Loomis, and
R. Kubli, “Comparative study: Grids and clouds, evolution or rev-
olution?” CERN” EGEE-II Report, June 2008, [Online] Available:
https://edms.cern.ch/file/925013/3/EGEE-Grid-Cloud.pdf.

[70] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. A.
Yelick, “The potential of the Cell processor for scientific comput-
ing,” in Conf. Computing Frontiers. ACM, 2006, pp. 9–20.

[71] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A
platform for fine-grained resource sharing in the data center,”
UCBerkeley, Tech. Rep. UCB/EECS-2010-87, May 2010. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/
EECS-2010-87.html

[72] L. Vu, “Berkeley Lab contributes expertise to new Amazon Web
Services offering,” Jul 2010, [Online] Available: http://www.lbl.
gov/cs/Archive/news071310.html.

[73] J. P. Jones and B. Nitzberg, “Scheduling for parallel supercomput-
ing: A historical perspective of achievable utilization,” in JSSPP,
ser. LNCS, vol. 1659. Springer-Verlag, 1999, pp. 1–16.

[74] lxc Linux Containers Team, “Linux containers overview,” Aug
2010, [Online] Available: http://lxc.sourceforge.net/.

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010 16

Alexandru Iosup received his Ph.D. in Com-
puter Science in 2009 from the Delft Univer-
sity of Technology (TU Delft), the Netherlands.
He is currently an Assistant Professor with the
Parallel and Distributed Systems Group at TU
Delft. He was a visiting scholar at U.Wisconsin-
Madison and U.California-Berkeley in the sum-
mers of 2006 and 2010, respectively. He is the
co-founder of the Grid Workloads, the Peer-
to-Peer Trace, and the Failure Trace Archives,
which provide open access to workload and

resource operation traces from large-scale distributed computing envi-
ronments. He is the author of over 50 scientific publications and has
received several awards and distinctions, including best paper awards at
IEEE CCGrid 2010, Euro-Par 2009, and IEEE P2P 2006. His research
interests are in the area of distributed computing (keywords: massively
multiplayer online games, grid and cloud computing, peer-to-peer sys-
tems, scheduling, performance evaluation, workload characterization).

Simon Ostermann received Bakk.techn. and
Dipl.-Ing. degrees from the University of Inns-
bruck, Austria, in 2006 and 2008, respectively.
Since 2008 he is following a doctoral track in
Computer Science with the Distributed and Par-
allel Systems Group at the Institute for Computer
Science, University of Innsbruck. His research
interests are in the areas of resource manage-
ment and scheduling in the area of grid and
cloud computing. He is the author of over 10
journal and conference publications.

M.Nezih Yigitbasi received BSc and MSc de-
grees from the Computer Engineering Depart-
ment of the Istanbul Technical University, Turkey,
in 2006 and 2008, respectively. Since Septem-
ber 2008, he is following a doctoral track in
Computer Science within the Parallel and Dis-
tributed Systems Group, Delft University of Tech-
nology. His research interests are in the areas
of resource management, scheduling, design
and performance evaluation of large-scale dis-
tributed systems, in particular grids and clouds.

Radu Prodan received the Ph.D. degree from
Vienna University of Technology, Vienna, Aus-
tria, in 2004. He is currently an Assistant Pro-
fessor at the Institute of Computer Science,
University of Innsbruck, Austria. His research
in the area of parallel and distributed systems
comprise programming methods, compiler tech-
nology, performance analysis, and scheduling.
He participated in several national and European
projects. He is currently coordinating three Aus-
trian projects and was workpackage Leader in

the IST-034601 (edutain@grid) and 26185 (SHIWA) projects. He is the
author of over 70 journal and conference publications and one book.
Radu Prodan was the recipient of an IEEE Best Paper Award.

Thomas Fahringer received the Ph.D. degree
in 1993 from the Vienna University of Technol-
ogy. Between 1990 and 1998, he worked as an
assistant professor at the University of Vienna,
where he was promoted as an associate pro-
fessor in 1998. Since 2003, he has been a full
professor of computer science in the Institute of
Computer Science, University of Innsbruck, Aus-
tria. His main research interests include software
architectures, programming paradigms, compiler
technology, performance analysis, and predic-

tion for parallel and distributed systems. He coordinated the IST-034601
edutain@grid project and was involved in numerous other Austrian and
international European projects. He is the author of more than 100
papers, including three books. Prof. Fahringer was the recipient of two
best paper awards from the ACM and the IEEE.

Dick H.J. Epema received the MSc and PhD
degrees in mathematics from Leiden University,
Leiden, the Netherlands, in 1979 and 1983, re-
spectively. Since 1984, he has been with the De-
partment of Computer Science of Delft Univer-
sity of Technology, where he is currently an as-
sociate professor in the Parallel and Distributed
Systems Group. During 1987-1988, the fall of
1991, and the summer of 1998, he was a vis-
iting scientist at the IBM T.J. Watson Research
Center in New York. In the fall of 1992, he was a

visiting professor at the Catholic University of Leuven, Belgium, and in
the fall of 2009 he spent a sabbatical at UCSB. His research interests
are in the areas of performance analysis, distributed systems, peer-to-
peer systems, and grids. He has co-authored over 70 papers in peer-
reviewed conferences and journals, and was a general co-chair of Euro-
Par 2009 and IEEE P2P 2010.

