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Clustering 

Kmeans 
1/20 



Kmeans 
• Kmeans: accept K center patterns and a data set, divide 

the set into K clusters 
• Goal: 
 1. similar – data patterns in same cluster; 
 2. dissimilar – data patterns in different clusters. 

http://en.wikipedia.org/wiki/K-means_clustering 
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Kmeans on MapReduce 
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Shortcoming of Kmeans 

• The result of Kmeans clustering is affected by 
the value of K and the selection of K initial 
centroids. 
 

• Current solution: multiple attempts (in series) 
– Start from multiple groups of initial centroids  
– Execute multiple kmeans processes, obtain 

multiple local optimal cluster results 
– Pick the one with highest cluster quality 

Efficiency Problem 

4/20 

X

f(
x)

a

b

c

x

y

f(b)

f(a)

d

f(d)

f(c)

f(
x)

 

 

X

x

z

y

f(y)

f(x)



Mux-Kmeans 

• Idea: 
– Execute multiple Kmeans attempts in parallel 
– Share states across different Kmeans processes 
– Terminate “hopeless” attempts in early stage 
– Expand searching scale and try more attempts  

• Goal: 
– Guarantee the clustering quality 
– Decrease the runtime 
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Naive Kmeans VS. Mux-Kmeans 

Kmeans 
Job 

Kmeans 
Job 

Kmeans 
Job 

Kmeans 
Job 

Kmeans 
Job 

Kmeans 
Job 

Kmeans 
Job 

Kmeans 
Job 

Kmeans 
Job 

Kmeans 
Job 

Kmeans 
Job 

Kmeans 
Job 

Kmeans 
Job 

Kmeans 
Job 

Kmeans 
Job 

Kmeans 
Job 

Final 
Result 

6/20 



Naive Kmeans VS. Mux-Kmeans 
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Inside Mux-Kmeans Job 

1.  Kmeans clustering 
2.  Evaluate intermediate 

result’s quality 
3.  Prune some Kmeans 

attempts with low quality 
4.  Incubate new groups of 

centroids for next iteration 
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Kmeans, Evaluate & Prune 
• Use Kmeans algorithm to do clustering 

– Get multiple updated centroid groups 

• Use Total Within-Cluster Variation (TWCV) to 
evaluate different centroid groups’ quality. 

• Prune x% centroid groups with relatively low quality 
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Permute 
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Incubate 
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Incubate 1: RSDS 

Random Search within a Definite Scope 
 

1. Star = compute the middle of two related centroids 
2. Random search around the star, radius = 2*distance(centroid, start) 
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Incubate 2: ADGP 

Average of Dissimilar Group Pairs 
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Implementation 
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Experiment Setup 

• Experiment Environment 
– Amazon EC2: 16 nodes, Ubuntu 12.04, Hadoop 

1.4.1 
– Each node: 2 ECUs and 1 CPU; 3.7 GB memory; 

410 GB storage; moderate network performance 

• Experiment Dataset 
   Points features 

Bio_train 145751 74 
Netflix 17770 1000 
Lastfm 359330 40 
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Clustering Quality 
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Clustering Quality 
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Elapsed Time 
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Summary & Future Work 

• The Mux-Kmeans algorithm.  
– Idea: execute multiple attempts in parallel, share states across different 

kmeans processes, terminate “hopeless” attempts in early stage, expand 
search scale and try more attempts  

– Implementation: deployed on MapReduce  

– Result: better clustering quality and shorter runtime when processing multiple 

centroid groups 

• Future work 

– Different k in different centroid groups 

– Many possible Mux-XXX algorithms (Mux-EM, Mux-FCM, etc.) 
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