
Mux-Kmeans: Multiplex Kmeans for
Clustering Large-scale Data Set

Chen Li, Yanfeng Zhang, Minghai Jiao, Ge Yu
Northeastern University, China

Clustering

Kmeans
1/20

Kmeans
• Kmeans: accept K center patterns and a data set, divide

the set into K clusters
• Goal:
 1. similar – data patterns in same cluster;
 2. dissimilar – data patterns in different clusters.

http://en.wikipedia.org/wiki/K-means_clustering

2/20

Kmeans on MapReduce

K-Means
Job

K-Means
Job

K-Means
Job

K-Means
Job

3/20

Shortcoming of Kmeans

• The result of Kmeans clustering is affected by
the value of K and the selection of K initial
centroids.

• Current solution: multiple attempts (in series)
– Start from multiple groups of initial centroids
– Execute multiple kmeans processes, obtain

multiple local optimal cluster results
– Pick the one with highest cluster quality

Efficiency Problem

4/20

X

f(
x)

a

b

c

x

y

f(b)

f(a)

d

f(d)

f(c)

f(
x)

X

x

z

y

f(y)

f(x)

Mux-Kmeans

• Idea:
– Execute multiple Kmeans attempts in parallel
– Share states across different Kmeans processes
– Terminate “hopeless” attempts in early stage
– Expand searching scale and try more attempts

• Goal:
– Guarantee the clustering quality
– Decrease the runtime

5/20

Naive Kmeans VS. Mux-Kmeans

Kmeans
Job

Kmeans
Job

Kmeans
Job

Kmeans
Job

Kmeans
Job

Kmeans
Job

Kmeans
Job

Kmeans
Job

Kmeans
Job

Kmeans
Job

Kmeans
Job

Kmeans
Job

Kmeans
Job

Kmeans
Job

Kmeans
Job

Kmeans
Job

Final
Result

6/20

Naive Kmeans VS. Mux-Kmeans

Mux-
Kmeans

Job

Mux-
Kmeans

Job

Final
Result

Mux-
Kmeans

Job

Mux-
Kmeans

Job

7/20

Inside Mux-Kmeans Job

1. Kmeans clustering
2. Evaluate intermediate

result’s quality
3. Prune some Kmeans

attempts with low quality
4. Incubate new groups of

centroids for next iteration

8/20

Kmeans, Evaluate & Prune
• Use Kmeans algorithm to do clustering

– Get multiple updated centroid groups

• Use Total Within-Cluster Variation (TWCV) to
evaluate different centroid groups’ quality.

• Prune x% centroid groups with relatively low quality

9/20

Permute

10/20

c1

c3

c2

Kmeans 1 (Group 1) Kmeans 2 (Group 2)

c3

c1

c2

c1<->c3 ; c2<->c1 ; c3<->c2 ;

Incubate

11/20

Incubate 1: RSDS

Random Search within a Definite Scope

1. Star = compute the middle of two related centroids
2. Random search around the star, radius = 2*distance(centroid, start)

12/20

c3

c2
c1c1

c3

c2

c3

c1

c2

Incubate 2: ADGP

Average of Dissimilar Group Pairs

13/20

Implementation

14/20

Experiment Setup

• Experiment Environment
– Amazon EC2: 16 nodes, Ubuntu 12.04, Hadoop

1.4.1
– Each node: 2 ECUs and 1 CPU; 3.7 GB memory;

410 GB storage; moderate network performance

• Experiment Dataset
 Points features

Bio_train 145751 74
Netflix 17770 1000
Lastfm 359330 40

15/20

Clustering Quality

7.30E+12

8.30E+12

9.30E+12

1 2 3 4 5 6 7 8 9 10 11

T
W

C
V

Iteration

RSDS
ADGP
Kmeans

K value:6 centroid group amount:8

Lastfm

4.80E+11

1.28E+12

2.08E+12

1 2 3 4 5 6 7 8 9 10 11

T
W

C
V

Iteration

RSDS
ADGP
Kmeans

Bio_train

5.00E+09

2.30E+10

4.10E+10

1 2 3 4 5 6 7 8 9 10 11

T
W

C
V

Iteration

RSDS
ADGP
Kmeans

Netflix

Different data set

16/20

4.80E+11

1.28E+12

2.08E+12

1 2 3 4 5 6 7 8 9 10 11

T
W

C
V

Iteration

RSDS
ADGP
Kmeans

Clustering Quality

K:6 S:8

Same data set: Bio_train

4.80E+11

1.28E+12

2.08E+12

1 2 3 4 5 6 7 8 9 10 11

T
W

C
V

Iteration

RSDS
ADGP
Kmeans

K:6 S:20

3.80E+11

8.80E+11

1.38E+12

1 2 3 4 5 6 7 8 9 10 11

T
W

C
V

Iteration

RSDS
ADGP
Kmeans

K:12 S:8

3.80E+11

8.80E+11

1.38E+12

1 2 3 4 5 6 7 8 9 10 11

T
W

C
V

Iteration

RSDS
ADGP
Kmeans

K:12 S:20

3.50E+11

8.50E+11

1.35E+12

1 2 3 4 5 6 7 8 9 10 11

T
W

C
V

Iteration

RSDS
ADGP
Kmeans

K:18 S:8

3.50E+11

8.50E+11

1.35E+12

1 2 3 4 5 6 7 8 9 10 11
T

W
C

V

Iteration

RSDS
ADGP
Kmeans

K:18 S:20

※S: centroid groups amount

17/20

Elapsed Time

0

1000

2000

3000

4000

5000

6000

7000

k:6,s:8 k:6,s:20 k:12,s:8 k:12,s:20 k:18,s:8 k:18,s:20

Ti
m

e(
s)

RSDS ADGP Kmeans acc Kmeans

0

500

1000

1500

2000

2500

3000

3500

k:6,s:8 k:6,s:20 k:12,s:8 k:12,s:20 k:18,s:8 k:18,s:20

Ti
m

e(
s)

RSDS ADGP Kmeans acc Kmeans

Lastfm Bio_train

0

200

400

600

800

1000

1200

1400

1600

k:6,s:8 k:6,s:20 k:12,s:8 k:12,s:20 k:18,s:8 k:18,s:20

Ti
m

e(
s)

RSDS ADGP Kmeans acc Kmeans

Netflix 18/20

Summary & Future Work

• The Mux-Kmeans algorithm.
– Idea: execute multiple attempts in parallel, share states across different

kmeans processes, terminate “hopeless” attempts in early stage, expand
search scale and try more attempts

– Implementation: deployed on MapReduce

– Result: better clustering quality and shorter runtime when processing multiple

centroid groups

• Future work

– Different k in different centroid groups

– Many possible Mux-XXX algorithms (Mux-EM, Mux-FCM, etc.)

19/20

20/20

	Mux-Kmeans: Multiplex Kmeans for Clustering Large-scale Data Set
	幻灯片编号 2
	Kmeans
	Kmeans on MapReduce
	Shortcoming of Kmeans
	Mux-Kmeans
	Naive Kmeans VS. Mux-Kmeans
	Naive Kmeans VS. Mux-Kmeans
	Inside Mux-Kmeans Job
	Kmeans, Evaluate & Prune
	Permute
	Incubate
	Incubate 1: RSDS
	Incubate 2: ADGP
	Implementation
	Experiment Setup
	Clustering Quality
	Clustering Quality
	Elapsed Time
	Summary & Future Work
	幻灯片编号 21

