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ABSTRACT

Scientific facilities such as the Advanced Light Source (ALS)
and Joint Genome Institute and projects such as the Ma-
terials Project have an increasing need to capture, store,
and analyze dynamic semi-structured data and metadata.
A similar growth of semi-structured data within large In-
ternet service providers has led to the creation of NoSQL
data stores for scalable indexing and MapReduce for scal-
able parallel analysis. MapReduce and NoSQL stores have
been applied to scientific data. Hadoop, the most popular
open source implementation of MapReduce, has been eval-
uated, utilized and modified for addressing the needs of dif-
ferent scientific analysis problems. ALS and the Materials
Project are using MongoDB, a document oriented NoSQL
store. However, there is a limited understanding of the per-
formance trade-offs of using these two technologies together.
In this paper we evaluate the performance, scalability and
fault-tolerance of using MongoDB with Hadoop, towards the
goal of identifying the right software environment for scien-
tific data analysis.

1. INTRODUCTION

Scientific domains such as bio-informatics, material science
and light source communities are seeing exponential growth
in data volumes, data variety, and the rate at which data
needs to be analyzed. Exploratory data analysis, where sci-
entists use data mining and statistical techniques to look
for patterns, is difficult at this scale with currently available
tools.

These scientific communities need new tools to handle the
large amounts of semi-structured data. They require scal-
able methods for both simple queries as well as complex
analysis. For example, the Materials Project [17] provides
a community accessible datastore of calculated (and soon,
experimental) materials properties of interest to both theo-
rists and experimentalists. The Materials Project’s under-
lying MongoDB datastore is used to capture the state of its
high-throughput calculation pipeline outputs and views of
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the calculated material properties. The data being stored
is complex, with hundreds of attributes per material, and
continually evolving as new types of calculations and col-
laborators are added onto the project over time. MongoDB
provides an appropriate data model and query language for
this application. However, the project also needs to perform
complex statistical data mining to discover patterns in ma-
terials and validate and verify the correctness of the data
(e.g., to see that a reference chemical reaction agrees with
the computed values). These kinds of analytics are difficult
with MongoDB, but naturally implemented as MapReduce
programs (e.g. Mahout). Similarly, the Advanced Light
Source’s Tomography beamline uses MongoDB to store the
metadata from their experiments and requires support for
queries as well as analysis capabilities.

The MapReduce [11] model and NoSQL datastores have
evolved due to large amounts of Internet and log data. The
MapReduce programming model emerged for processing large
data sets on large commodity clusters. The model allows
users to write map and reduce functions to operate on the
data and the system provides scalability and fault-tolerance.
Traditionally, MapReduce jobs have relied on specialized file
systems such as Google File System [15]. Apache Hadoop [3]
is an open-source MapReduce implementation and in the
last few years has gained significant traction. NoSQL [21]
databases, does not use SQL or the relational model. NoSQL
datastores achieve scalability through a distributed architec-
ture and by trading consistency for availability.

Recently, a number of NoSQL stores have provided exten-
sions that allow users to use Hadoop/MapReduce to oper-
ate on the data stored in these NoSQL data stores [19]. An
integrated environment that allowed one to capture semi-
structured data using a NoSQL store such as MongoDB, yet
use the MapReduce model for analysis, would address the
data requirements from these scientific communities. How-
ever, there is a limited understanding of the performance,
scalability and fault-tolerance trade-offs in this integrated
environment.

We take here a broad definition of semi-structured data as
presented in [2], which includes all data that is neither “raw”
nor very strictly typed as in conventional database systems.
This includes data with irregular, implicit, or partial struc-
ture, and also integrated data that may be well-structured
individually but which jointly defines a large and evolving
schema. We believe that a significant portion of scientific
data falls under this definition.

In this paper, we present the performance and reliabil-
ity of an integrated analysis environment that consists of a



scalable document-based NoSQL datastore (MongoDB) and
MapReduce framework (Hadoop). Specifically, we evaluate
the performance, scalability and fault-tolerance of MongoDB
with Hadoop.

Our results compare and contrast the trade-offs in perfor-
mance and scalability between MongoDB and HDFS back-
ends for Hadoop. We also study the effects of failures in
both cases. Our results show that:

• HDFS performs much better than MongoDB for both
reads and writes, with writes to MongoDB being the
most expensive. Our experiments quantify this per-
formance difference and we provide insights into the
design choices that result in this gap.

• The mongo-hadoop connector provides the best ap-
proach to analyzing data that already resides or needs
to be stored in MongoDB. The performance in this
mode can be improved by directing the output to HDFS
if that is feasible for the application.

• Hadoop’s design strives to achieve data locality by
placing the data on the compute nodes. Thus, node
failures can block access to data. The mongo-hadoop
framework, by separating the data servers and com-
pute nodes, can tolerate high failure rates of the com-
pute nodes; this is desirable in some scientific environ-
ments.

2. RELATED WORK

The applicability of Hadoop/HDFS and NoSQL data stores
for scientific applications and its individual performance has
been studied before. However, there is no prior work that
characterizes the performance of NoSQL when used with
Hadoop or another MapReduce implementation.

Bonnet et al. [7] describe how the MapReduce algorithm
of MongoDB could help aggregate large volumes of data,
but do not provide quantitative results. Verma et al. [24]
evaluate both MongoDB and Hadoop MapReduce perfor-
mance for an evolutionary genetic algorithm, but the Mon-
goDB and Hadoop results use different configurations and
the authors do not attempt to compare them. Neither work
directly compares, as we do here, different combinations of
using MongodB and Hadoop in an analysis environment.

There are other NoSQL databases that provide Hadoop
support. Cassandra [16] is a peer to peer key-value store that
has the ability to replace Hadoop’s HDFS storage layer with
Cassandra (CassandraFS). HBase [4] is an open source dis-
tributed column oriented database that provides Bigtable [8]
inspired features on top of HDFS. HBase includes Java classes
that allow it to be used transparently as a source and/or sink
for MapReduce jobs. It has been previously shown that
the right architectural changes to Hadoop and HBase can
provide an improved solution to store and study big un-
structured data [5]. These studies are not representative of
performance one can get from NoSQL data stores that do
not rely on HDFS. Our choice of MongoDB is motivated
by the need for a document-oriented store for the scientific
communities we work with.

Cooper et al. [10] compare different NoSQL and rela-
tional databases (Cassandra, HBase, Yahoo!’s PNUTS [9],
and MySQL) through an extensible benchmark framework.

This benchmark suite is an open source effort and can be ex-
tended to test different systems and workloads. Dory et al.
[12] study the elastic scalability of MongoDB, HBase and
Cassandra on a cloud infrastructure. These studies do not
consider the performance achievable when using a MapRe-
duce framework with these data stores.

Floratou et al. [14] compare NoSQL databases MongoDB
and Hive to the relational database SQL Server PDW us-
ing YCSB [10] and TPC- H DSS [23] benchmarks. They
compare these technologies for data analysis and interactive
data serving. They show that while relational databases
may perform better, NoSQL systems have usability advan-
tages such as flexible data models, auto-sharding and load
balancing (all of which are present in MongoDB).

The increasing use of NoSQL data stores in science and
gaps in current literature led us to conclude that there is a
need for more detailed evaluations of the use of NoSQL data
stores as a back-end storage for Hadoop, such as this study
of MongoDB.

3. TECHNOLOGY OVERVIEW

Figure 1 shows the configuration we used for our evalua-
tion. In the center of the figure, the Hadoop MapReduce
Framework connects the reads and writes from the Mappers
and Reducers (boxes labeled “M” and “R”) to either HDFS
or, via the mongo-hadoop connector, to MongoDB. The re-
mainder of this section gives more details on MongoDB and
mongo-hadoop.
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Figure 1. The high-level architecture of mongo-hadoop. Multiple
mappers read the the input splits from either MongoDB (via the
Hadoop/MongoDB connector) or HDFS. The intermediate output is
collected in one reducer, which writes the results back to MongoDB
or HDFS.

3.1 MongoDB

MongoDB [18][20] is an open source NoSQL“document store”
database, commercially supported by 10gen [1]. Although
MongoDB is non-relational, it implements many features of
relational databases, such as sorting, secondary indexing and
range queries.

MongoDB does not organize data in tables with columns
and rows. Instead, data is stored in “documents”, each of
which is an associative array of scalar values, lists, or nested
associative arrays. MongoDB documents are serialized nat-
urally as Javascript Object Notation (JSON) objects, and
are in fact stored internally using a binary encoding of JSON
called BSON [6].

To scale its performance on a cluster of servers, MongoDB
uses a technique called sharding, which is the process of split-
ting the data evenly across the cluster to parallelize access.



This is implemented by breaking the MongoDB server into
a set of front-end routing servers (mongos), that route oper-
ations to a set of back-end data servers (mongod).

MongoDB queries examine one record at a time, which
means that queries across multiple records must be imple-
mented on the client or use MongoDB’s built-in MapReduce
(MR). Though MongoDB’s MR can be executed in paral-
lel at each shard, there are two major drawbacks: (1) the
language for MR scripts is JavaScript, which is slow and
has poor analytics libraries, and (2) the SpiderMonkey [22]
Javascript implementation used by MongoDB, is not thread-
safe, so only one MapReduce program can run at a time.

3.2 MongoDB-Hadoop Connector

The MongoDB-Hadoop Connector [19] is an open-source
plugin for Hadoop that allows MongoDB to be used, instead
of HDFS, as a source and sink of data.

The connector allows the user to specify a query, and
breaks the results of that query into input splits for Hadoop.
For sharded MongoDB servers, the splits are done on 64MB
shard chunks. The splits are shipped to the mappers as
queries to retrieve the actual data, so that each mapper can
read its splits in parallel. Results are written back to Mon-
goDB by the Hadoop reducer. Note that HDFS is not in-
volved in any one of these operations. This provides an alter-
native approach to either running MapReduce in MongoDB
directly, or performing a three-stage operation: loading the
data from MongoDB to HDFS, running Hadoop MapRe-
duce, and importing the output back into MongoDB. Both of
these approaches have drawbacks for complex operations on
large data sets. The problems with the Mongo-MapReduce
approach were noted in 3.1. The three-stage approach is
inconvenient and requires a large database and HDFS I/O.
The MongoDB-Hadoop Connector, which allows the user to
leave the input data in database, is thus an attractive option
to explore. The connector can optionally leave the output in
HDFS, which allows for different combinations of read and
write resources.

3.3 HDFS vs MongoDB Design: A Com-
parison

Table 1 summarizes the data access and reliability charac-
teristics of HDFS and MongoDB.

As our results show, these characteristics have impor-
tant implications for the relative performance of MapRe-
duce workloads. HDFS is optimized for sequential reads
and writes of data in relatively large chunks. MongoDB is
optimized for random and parallel access, i.e. queries to the
data. Our results also show that MongoDB exhibits poor
performance for parallel writes due to the global write lock.

Both MongoDB and HDFS provide data reliability through
replication. In the case of MongoDB, the client can choose
how many replicas finish a write (to the journal) before the
operation returns success; this has scalability advantages,
but is also an opportunity for catastrophic data loss if the
client is mis-configured. HDFS replication replicates the
data the specified number of times either based on a sys-
tem wide parameter or as controlled by the user.

4. EXPERIMENT SETUP

For our experiments we configured and deployed Hadoop,
HDFS, MongoDB, and the Mongo-Hadoop connector on ma-
chines at NERSC and Binghamton University.

Hadoop/HDFS Setup. We deployed HDFS using stan-
dard configuration parameters. We allowed the Hadoop
framework to choose the number of maps (the user’s sug-
gestion may be ignored anyways), and chose the default one
(1) reducer.

Mongo-Hadoop Connector Setup. We ran MongoDB
in two modes: as a single server and with sharding. For
the single server tests, each mapper connects to the sin-
gle MongoDB server. For sharded servers, load balancing
among mongos routers is achieved by having each mapper
randomly pick one mongos to communicate with. Our mon-
itoring showed that our randomization process resulted in a
fairly even load balancing.

Machines. We conducted our experiments on the NERSC
Hopper machine and the cluster at Grid and Cloud Com-
puting Research Lab Cluster (GCRL) at Binghamton Uni-
versity. This provided performance results for both an HPC
system and a typical smaller research cluster.

Hopper is a Cray XE6 with 153,216 compute cores, 217
Terabytes of memory, and 2 Petabytes of disk. Each node
has 24 cores, 2 twelve-core AMD ’MagnyCours’ 2.1-GHz pro-
cessors and 32 GB of RAM. On Hopper, we ran the Mon-
goDB server on a “MOM node” that is used for managing
and launching parallel applications.

On the GCRL cluster we ran the Hadoop namenode on
a dual core 2.4Ghz Intel Core 6600 with 2 GB of RAM,
running Linux 2.6.24. The Hadoop cluster nodes are Quad
core, 1U nodes with 2.6Ghz Intel Xeon CPUs, 8 GB of RAM
and run a 64-bit version of Linux 2.6.15. The MongoDB
servers ran on two nodes: one which is has two 2.6Ghz Intel
Xeon CPUs, 16 GB of RAM and 48 cores and another which
has two 2.4Ghz Intel Xeon CPUs, 16 GB of RAM 24 cores.

5. WORKLOADS

Our evaluation uses representative benchmarks that operate
on public datasets such as the U.S. Census data. In the U.S.
Census dataset, each record is a row of 111 comma separated
values. The total census data is about 300GB and we use
subsets of the data as applicable for the experiments.

Our evaluation performs three operations, which represent
different input and output data size ratios: filter, merge,
and reorder. The filter operation extracts the counties with
a bigger female population than a male population; the out-
put data is relatively small. For merge, we label the census
data for human search and viewing; since each line is anno-
tated, the output is larger than the input. For the reorder
operation, we globally change the field separator to a differ-
ent character; here, the output and input are the same size.
In this evaluation, we do not include our results for reorder
and merge due to space constraints.

These benchmarks are representative of the kind of op-
erations that scientists need to perform on their data. For
example, the filter operation can be generalized to any op-
eration that groups some value calculated for each record
by another set of fields in those records. An example of the



Table 1. HDFS and MongoDB

Characteristic HDFS MongoDB
Storage Distributed file system Distributed schema-less database, in-memory at each node
Reading Sequential, block access Random and sequential access, BTree indexes
Writing Cached locally then sent to DataNode Journaled writes to index and data blocks, per-server global write lock
Reliability Replication Replication

same type of query in the Materials Project data would be,
“find all materials containing oxygen and group them by the
ceiling of their formation energy in eV”. This type of op-
eration is related to a join between two sets of records, for
example checking that the reduced (simplified) formula in
a material is the same across all the calculation tasks that
were performed with this material, or more complex compar-
isons, such as verifying that phase diagrams are calculated
correctly. Because these operations are needed in many con-
texts, our benchmarking will provide valuable information
to scientific communities using these technologies.

6. EVALUATION

In this section, we analyze performance results to quantify
the performance differences of mongo-hadoop in different us-
age scenarios. We repeated all experiments three times. The
results use the mean value; the variance was uniformly low.
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Figure 2. Task manager running on 192 cores on NERSC Hopper.
768 tasks being processed by each worker with increasing checkpoint
intervals. From checkpointing every second to every five seconds the
overhead of the task manager drops almost 5 times.

6.1 Evaluation of MongoDB

The first experiment is designed to study how MongoDB
would perform at large scale, e.g. on NERSC’s HPC cluster,
Hopper. Our experiment used MongoDB to keep a central-
ized state for a distributed system with thousands of worker
nodes running in parallel. A standard approach to providing
fault tolerance and reliability in such a system is checkpoint-
ing, in which each worker periodically reports their status to
the central (MongoDB) server. This test stresses the ability
of MongoDB to handle large numbers of parallel connec-
tions.

Figure 2 shows the application time to complete 768 tasks
with different checkpoint intervals. The tasks take 10 min-
utes, and all run in parallel across the 192 cores (i.e. four
tasks per core). With no checkpoints, the total run-time is
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Figure 3. Task manager running on 24 to 480 cores on NERSC’s
Hopper cluster. Number of tasks have also been increased along
with the core increases. More tasks require more cores which creates
more connections to the MongoDB server. The checkpoint interval
here is 10 seconds while each task takes nearly 10 minutes.

≈ 10 minutes, so we subtract this time and report the dif-
ference as “overhead”. When the checkpoint interval is five
seconds the overhead is below 1 minute (< 10%). Reduc-
ing the checkpoint interval from five seconds to one second
increases the overhead to over 25 minutes (> 250%). This
degradation in performance is due to the increasing number
of connections per second, from 154 to 768, as well as the
increase in total write volume to 768MB/s.

Figure 3 shows how the overhead increases with the num-
ber of tasks and nodes, for two checkpoint sizes. In this
test, the individual task time is 10 minutes, all the tasks
are run in parallel. The checkpoint interval is held fixed at
10 seconds. In either case, the checkpoints do not add over-
head until after 1000 parallel tasks. For 1MB checkpoint size
runs, the performance is five times slower from 1152 tasks
to 1920 tasks. On the other hand, for 64KB checkpoint size
the performance drops almost four times from 1344 to 1920
tasks.

Although data volume and number of connections both
contribute to the overhead, the results make it clear that
large numbers of connections are a more significant bottle-
neck than the total data volume: at 1920 tasks, the 1MB
checkpoints add only ≈ 30% more overhead than the 64KB
checkpoints, despite having over 15× the data volume. This
is due to MongoDB’s large per-connection overhead, since
a separate thread with its own stack is allocated for every
new connection.

6.2 HDFS vs MongoDB Performance

Next, we compare the read and write performance of Mon-
goDB and HDFS. For this, we developed a Java program
and a Python script that each read 37M records, and wrote



19M records, to and from HDFS and MongoDB. These tests
are independent of our later evaluation of mongo-hadoop.

The goal is to compare the HDFS and MongoDB read/write
performance from a single node. In this experiment, we
have two HDFS data nodes and a MongoDB setup with two
sharding servers. In the read tests, the single node reads
37.2 million input records. Each record consists of 111 fields
and it is the same type of input records used in the Census
benchmarks. For this record size, we can read from HDFS
at a rate of 9.3 million records/minute and from MongoDB
at a rate of 2.7 million records/minute.

For write experiments, the records had only one field,
also as in our Census benchmarks. This means that the
records being written were roughly 100 times smaller than
the records that were read. For these records, the HDFS
writes the 19 million records in 15 seconds (74.5 million
records/minute), whereas MongoDB takes 6 minutes (3.2
million records/minute).

In summary, we see a 3:1 ratio between HDFS and Mon-
goDB in read performance for large records and a signifi-
cantly larger 24:1 difference in write performance for very
small records.

6.3 MongoDB MapReduce

MongoDB has its own built-in MapReduce implementation
(described in 3.1). The native MapReduce scales with the
number of shard servers, e.g., for eight MongoDB servers
eight map tasks will be launched.

Figure 4 compares MongoDB’s native MapReduce (MR)
with mongo-hadoop MapReduce. To obtain these results, we
ran MongoDB on a single server and used a 2-node Hadoop
cluster. For this configuration, the mongo-hadoop plug-in
provides roughly five times better performance. The graph
shows that the performance gain from using mongo-hadoop
increases linearly with input size in the give range of input
records.
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Figure 4. Native MongoDB MapReduce (MR) versus mongo-hadoop
MR. Experiment used 1 MongoDB server and, for mongo-hadoop, 2
Hadoop workers.

6.4 Evaluating MongoDB Configurations

The split size is an important performance parameter be-
cause it affects the number of mappers. Each mapper reads
a split from the MongoDB server, does processing and sends
its intermediate output to the reducer. For large data sets,
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Figure 5. 9.3 Million input records on a mongo-hadoop setup. The
split size is varied from 8MB to 256MB.
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a split size of 8MB results in hundreds of thousands of map-
pers. Previous work shows [13] that too many mappers can
add a significant task management overhead. For exam-
ple, while 100 mappers can provide great performance for a
100GB input, the same 100 mappers will degrade the per-
formance for an input set of a few megabytes.

Figure 5 shows the effect of the split size on performance
using mongo-hadoop. The number of input records is ≈ 9.3
million, or 4GB of input data. With the default split size of
8MB, Hadoop schedules over 500 mappers; by increasing the
split size, we are able to reduce this number to around 40
and achieve a considerable performance improvement. The
curve levels off between 128MB and 256MB, so we decided
to use 128MB as the split size for the rest of our tests both
for native Hadoop-HDFS and mongo-hadoop.

Figure 6 shows a filter test run on a 2-node Hadoop clus-
ter. This figure shows Hadoop-HDFS and mongo-hadoop with
a single MongoDB server and a sharding setup with two
MongoDB servers. For 4.6 million input records, HDFS per-
forms two times better than MongoDB, and for increasing
input sizes the gap becomes larger: at 37.2 million records,
HDFS is five times faster than MongoDB. The graph shows
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Figure 7. MongoDB Sharding setup is placed on the worker nodes
versus remote nodes on a 2 node Hadoop cluster. Placing the servers
on the workers causes competition for CPU time and memory and
the workers get slower.

a slight performance advantage for mongo-hadoop with a
sharding setup vs. a single server.

The figure shows that replacing HDFS with MongoDB
causes worse performance for both reads and writes. Com-
pared to Hadoop-HDFS, mongo-hadoop with a single data
server is more than 3 times slower in reading while it per-
forms nine times worse for writes. This is for processing 37.2
million input records. In a sharded setup, mongo-hadoop
reading times improve considerably, as there are multiple
servers to respond to parallel worker requests. However, the
writing times are still over 9 times slower.

For the results shown in Figure 7, we placed the Mon-
goDB sharding servers onto the Hadoop worker nodes and
forced each worker to use the local sharding server as the
input/output source. The aim of this test was to imitate
HDFS input data locality. The performance slightly wors-
ened compared to running the servers on different machines.
We believe that this was due to memory contention. Mon-
goDB uses mmap to aggressively cache data from disk into
memory, and thus shares badly with other memory-hungry
programs such as the Java virtual machine. As we increase
input data sizes, we observe increased memory and CPU us-
age on the nodes for the MongoDB operations and this in
turn lead to slower times.

6.5 Scalability Tests

Figure 8 shows the performance over increasing cluster sizes
from 16 to 64 cores with HDFS, single MongoDB server and
two MongoDB sharded servers. The read times improve in
the sharded setup as it is able to balance the increasing num-
ber of concurrent connections. As explained in the previous
graphs, the write time is bound by the reduce phase for
this MapReduce job. For a case where many reducers are
working in parallel, a sharding setup will also help the write
times by providing better response for multiple concurrent
connections. However, the write performance of MongoDB
still remains to be a bottleneck along with the overhead of
routing data to be written between sharding servers.

Figure 9 shows the comparison of performance of various
combinations of using Hadoop and MongoDB for reads and
writes. The mongo-hadoop setup can be used in various
combinations like reading the input from MongoDB, then
storing the output to HDFS, and vice versa. Hadoop-HDFS
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Figure 8. Hadoop-HDFS versus mongo-hadoop with varying cluster
sizes from 16 cores to 64 for 37 million input records. Sharding Mon-
goDB performs better against increasing number of parallel mappers.
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Figure 9. Hadoop and MongoDB cooperated in different usage sce-
narios on a 4 core Hadoop cluster with increasing data sizes. While
Hadoop-HDFS performs best for a large dataset that is already in
MongoDB, moving the input to HDFS creates huge overhead which
makes mongo-hadoop approach a more desirable option.

provides the best performance, as expected. For an input
dataset that is stored in MongoDB and needs to be ana-
lyzed, best performance can be achieved when data is read
from MongoDB and the output is written to HDFS as it is
more write efficient. The alternate approach for analyzing
the data in MongoDB would entail downloading the data to
HDFS before running the analysis which, as shown, has the
slowest performance. Thus, for input data that is already
stored in MongoDB, the plugin provides a good alternative,
since the cost of downloading data to HDFS increases with
the growing input sizes.

Figure 10 shows the performance over increasing cluster
size (from 8 cores to 64) for 37.2 million input records. With
an increasing number of worker nodes, the concurrency of
the map phase also goes up, and therefore the map times get
considerably faster. However, as the application does not
require many reducers, the increasing number of nodes does
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Figure 10. Hadoop and MongoDB cooperated in different usage
scenarios for processing 37.2 million input records on a varying sized
cluster from 8 cores to 64.

not have a big impact on the reduce phase. Moreover, we do
not see much of a performance gain after 16 nodes since the
overhead of launching a large number of parallel tasks for a
relatively small data set in this case (nearly 17GB) reduces
any effects of increased parallelism.

6.6 Fault Tolerance
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Figure 11. Hadoop-HDFS versus mongo-hadoop on a 32 node Hadoop
cluster processing 37 million input records. After 8 faulted nodes
Hadoop-HDFS loses too many data nodes and fails to complete the
MapReduce job. mongo-hadoop gets the input splits from the Mon-
goDB server therefore losing nodes does not lead to lose of input
data.

Figure 11 shows the fault tolerance evaluation of mongo-
hadoop versus Hadoop-HDFS on a 32 node Hadoop cluster
processing 37 million input records. After eight faulted
worker nodes Hadoop-HDFS loses too many data nodes and
fails to complete the MapReduce job since the worker nodes
also host chunks of the input data. On the other hand,
mongo-hadoop gets the input splits from the MongoDB server
therefore losing worker nodes does not lead to loss of input

data. Thus, the job is able to finish even with half of the
cluster lost. Note that losing the MongoDB server or one of
the servers in the case of sharding will create the same effect
and the MapReduce job will fail.

7. DISCUSSION

Our experiments provide important insights into the use of
MongoDB for storage and Hadoop for analysis. Below we
summarize our key insights:

• A single MongoDB shows a considerable deterioration
in performance between 1000 and 1500 concurrent threads.
Sharding helps to improve MongoDB’s performance es-
pecially for reads.

• In cases where data is already stored in MongoDB and
needs to be analyzed, the mongo-hadoop connector
provides a convenient mechanism to use Hadoop for
scalability. Better performance can be achieved if the
output of the analysis could be written to HDFS in-
stead of back to MongoDB especially with larger data
volumes.

• One of Hadoop’s strengths is data locality that is achiev-
able by combining the data and compute servers. The
downside of this configuration is that availability vari-
ations affect both systems simultaneously. Using Mon-
goDB as a back-end separates data server availability
from compute server availability, allowing the system
to be more resilient (e.g. the loss of compute nodes).

• In MongoDB, reducing the checkpoint interval signif-
icantly increases the overhead. In our experiments,
when the interval was changed from five seconds to
one second, the overhead increased by a factor of 2.5.
This degradation in performance is due to the increas-
ing number of connections, increasing write requests
per second, as well as the increase in total write vol-
ume.

• Although, data volume and number of connections both
contribute to the overhead of MongoDB, our results
show that the large numbers of connections cause a
more significant bottleneck than the total data vol-
ume.

• The mongo-hadoop plug-in provides roughly five times
better performance compared to using MongoDB’s na-
tive MapReduce implementation. The performance
gain from using mongo-hadoop increases linearly with
input size.

• By increasing the split size, the performance of mongo-
hadoop can be considerably improved. Split size, and
the number of maps being launched, should be exam-
ined and configured accordingly in order to get the best
performance for a given input data size and number of
nodes in the Hadoop cluster.

• Replacing HDFS with MongoDB causes worse perfor-
mance for both reads and writes. While processing
37.2 million input records, compared to Hadoop-HDFS,
mongo-hadoop with a single data server is more than
three times slower in reading, it performs nine times
worse in the output write phase. In a sharded setup,



mongo-hadoop reading times improve considerably, as
there are multiple servers to respond to parallel worker
requests. The writing times, however, are still over
nine times slower.

• In a 32 node cluster, with 8 node failures, Hadoop-HDFS
fails to complete the MapReduce job since the worker
nodes also host chunks of the input data. On the other
hand, mongo-hadoop gets the input splits from the
MongoDB server therefore losing worker nodes does
not lead to loss of input data. Thus, the job is able to
finish even with half of the cluster lost.

8. CONCLUSION

In this paper we evaluated the combination of the MapRe-
duce capabilities of Hadoop with the schema-less database
MongoDB, as implemented by the mongo-hadoopplugin [19].
This study provides insights into the relative strengths and
weaknesses of using the MapReduce paradigm with different
storage implementations, under different usage scenarios.
MongoDB, like other datastores, is optimized for queries. In
cases where the dataset needs to be both queried as well as
analyzed, the connector provides a convenient mechanism
to achieve scalability for the analysis tasks using Hadoop.
In general, we found that this solution is appropriate if the
workload uses MongoDB as a database that needs to be
occasionally used as a source of data for analytics as in the
case of the Materials Project. However, it is not appropriate
when using MongoDB as an analytics platform that some-
times must act like a database. We show that using Hadoop
for MapReduce jobs is several times faster than using the
built-in MongoDB MapReduce capability. As a back-end
for Hadoop, MongoDB is much slower than HDFS, primarily
due to the design differences between MongoDB, a NoSQL
database, and HDFS, a file management system.
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