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Workflows for Modeling eScience
]

O Workflows common for in 0 Compute & Data intensive
silico experiments

m DAGs & dataflows
O Allow easy composition
m Change often

O Loosely-coupled tasks, Tighly-
coupled MPI ® Scale-out beyond current

m Different task characteristics resources

® Challenge of eScience
problem sizes

1 Resource needs often
exceed available ones

0




Flourishing Space of Resource Platforms

0 Cluster, Cloud, HPC, Desktop
O Local, captive resources

O Batch systems

0 On-demand platforms

O Different characteristics of
resource platforms




Cloud Platform for eScience
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Resource Selection for Workflows

]

O Scientists need to select from 0 DAG Scheduling Algorithms
existing & emerging ® Tasks/WF scheduled to a
resources plq'rfo.rmW ol

0 Ad hoc, Rule of thumb, based B Avtomaric F. S¢ ?du N9

familiari B Pegasus, Swift, Trident, etc.
on ramiliarity schedule WFs to remote resources
®m Can be sub-optimal, punitive N Supcporc'r%/qrious platforms: Cluster,
. . L. HPC, EC2.

o Different characteristics of = Mandal et al. Perf-based
resource platforms advance reservation for GrADS
® Dynamic over short, long term m Batch Queue Prediction Service

o Different goals m Blythe, et al. Task level greedy

algorithm v. WF level
® Makespan, usage, co$t optimization



Resource Selection for Workflows
|

O These need information about
WFs

m Structural, task level details, data

flow O Fine grained workflow

O Fine grained details hard to specs, evolving resource

determine & specify platforms pose overhead

® Provenance mining, perf models for users
O Different granularity of WF

details

® Blackbox, Graybox, Whitebox



Hypothesis —

0 Can we make intelligent 0O What are trade-offs of
resource platform running applications on
selection with limited different platforms?
workflow information@
= Length
= Width
= Data In/Out



- OVERVIEW



Workflow Characteristics

Structural Information

O Pattern: Sequential, Fork-Join,
Control flow

O Length: # of stages, length per
stage, total length

o Width: Fanout

Resource Usage

o Data: In/Out
0 Compute: Cores required

Input Data

CPU Time

Intermediate
Data

CPU Time,
Fanout

Intermediate
Data

CPU Time,
Fanout

Output Data




Resource Platforms & Characteristics
S

Desktop HPC

O Full application control O Shared, national centers

0 Growth of multi-core O Large # of cores (>1000)

O eScience beats Moores Law O Over-subscribed queues, policies
Cluster Cloud

o Small-Mid Clusters (~256 core) O Infra. & Platform as Service

O Under-subscribed, instant use o On-demand, customizable

O Large science apps don'’t fit O Virtualization impact, Bandwidth

® Available cores ® Queue/VM Latency ® N/W Bandwidth ® Core Speed



- PLATFORM SELECTION FOR WORKFLOWS



MOTIF WORKFLOW I

Whitebox Selection (Fine Grained)

3
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o Full workflow & Task details available

0 Total runtime due to m CPU Time m 1/O
data transfer m Queue /VM Overhead

o Time is from by each independent task
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MOTIF WORKFLOW I

Graybox Selection (Hybrid)
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0 Workflow Stage details available

m Stages opaque. No task details available.
o0 Time is from by each independent stage

0 Overhead time only for longest stage
® Queue/VM times pipelined

# stages
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MOTIF WORKFLOW I

Blackbox Selection (Coarse Grained)

91.5mins

135X

1269MB

0 Only Workflow outline details available

m Workflow internals opaque

m Total CPU Time m Data xfer at boundary

0 Overhead time for entire workflow

m All required cores for workflow acquired

EF WorkflowTime
= ToverheadMax + TData

n (TWm"kflowLength X NWorkflowWidth)

N Cores




- EARLY EVALUATION



eScience Workloads for Evaluation
|

MOTIF Network Workflow  GWAS Workflow

o0 Gene regulation dependency H Genome wide association

networks study

O Compute intensive & wide
m 1 50MB input, 160MB output
m |1 9mins long, 1100 task wide

O Compute & data intensive
m |1 3MB input, 1300MB output

® 90mins long, 135 task wide m 6 stages: Two compute

m 3 Stages: Fork, Compute fanouts 1100 and 150 tasks
fanout, Join wide



Resource Platforms for Evaluation
- r
Local Workstation Teragrid HPC Clusters
o SDSC & BigRed clusters
a1 Core, 2.5GHz 0 1 — 2048 cores of 2.5GHz

o All data local 0o NWS Batch Queuve Prediction
Service (95% Quantile)

o Data remote. 10Mbps WAN.
O Up to 256 cores of 2.5GHz Azure Cloud

Local Cluster

o0 Data remote on client 0 Small VM, 1 core, 1.6GHz

o 1Gbps LAN bandwidth O VM start time ~200 + 20c¢ secs
O Data remote. 10Mbps WAN.



Results: Motif Workflow
I

0 Black & Graybox ordering of platforms same for different # cores

0 Black & Whitebox ordering similar ... except for the two HPC’s
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Results: Motif Workflow

Black & Whitebox absolute difference for
BigRed is large

Black & Graybox absolute difference is

small across platforms

20%

0%

Error % of Blackbox from Graybox

T MOTIF

(Blackbox-Graybox Error)

- [c¢] © AN <t [ee] L
- (92} © 9] (32}
— i

Number of Cores

m Desktop m Cluster
H Cloud-Azure = HPC-BigRed
20% L ®HPC-SDSC -
Blackbox — Graybox

Absolute Difference

Error % of Blackbox from Whitebox

80%

60%

40%

20%

0% -

-20%

-40%

T MOTIF
(Blackbox-Whitebox Error)

mCloud-Azure mHPC-BigRed
L mHPC-SDSC

- [ee] © (] <t [ee] 0
— [42] (] N ™
— —
Number of Cores
m Desktop m Cluster

Blackbox — Whitebox
Absolute Difference




Results: GWAS Workflow

B [ Blackbox & Whitebox ordering similar

m BigRed: T core job queue time in WBox faster than width-core job for BBox
m SDSC/Azure: Azure linear time; SDSC has step at 1024 cores for BBox
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- Conclusion & Future Work



Conclusions & Future work
I
0 Runtime estimated from 0 More complex workflows
Blackbox good enough for ® Simulation v. Calculation

relative comparison O Synthetic workflow runs

® Absolute values vary m Effect of each workflow

0 Queve overhead for task attribute on estimate
v. WF as a job has impact 0 Other WF features that
m Azure linear, HPC step times have impact
0 Graybox ~= Blackbox ® E.g. Min required cores per

stage
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