COMPARISON OF RESOURCE PLATFORM SELECTION APPROACHES FOR SCIENTIFIC WORKFLOWS

Science Cloud 2010 Yogesh Simmhan, MSR & Lavanya Ramakrishnan, LBL

Workflows for Modeling eScience

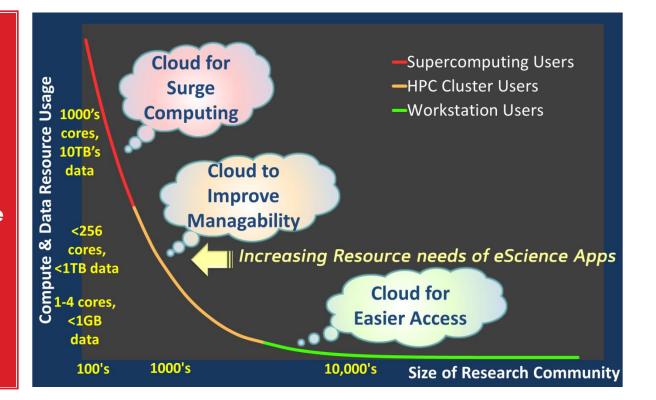
- Workflows common for in silico experiments
 - DAGs & dataflows
- Allow easy composition
 - Change often
- Loosely-coupled tasks, Tighlycoupled MPI
 - Different task characteristics

- Compute & Data intensive
 - Challenge of eScience problem sizes
- Resource needs often exceed available ones
 - Scale-out beyond current

resources

Flourishing Space of Resource Platforms

- Cluster, Cloud, HPC, Desktop
- Local, captive resources
- Batch systems
- On-demand platforms
- Different characteristics of resource platforms



Cloud Platform for eScience

On-demand

- Scale out
- Available
- Management Ease
- **Economical (TCO)**
- **Simple APIs**

Resource Selection for Workflows

- Scientists need to select from existing & emerging resources
- Ad hoc, Rule of thumb, based on familiarity
 - Can be sub-optimal, punitive
- Different characteristics of resource platforms
 - Dynamic over short, long term
- Different goals
 - Makespan, usage, co\$t

DAG Scheduling Algorithms

- Tasks/WF scheduled to a platform
- Automatic WF Scheduling
 - Pegasus, Swift, Trident, etc. schedule WFs to remote resources
 - Support various platforms: Cluster, HPC, EC2.
 - Mandal, et al. Perf-based advance reservation for GrADS
 - Batch Queue Prediction Service
 - Blythe, et al. Task level greedy algorithm v. WF level optimization

Resource Selection for Workflows

- These need information about WFs
 - Structural, task level details, data flow
- Fine grained details hard to determine & specify
 - Provenance mining, perf models
- Different granularity of WF details
 - Blackbox, Graybox, Whitebox

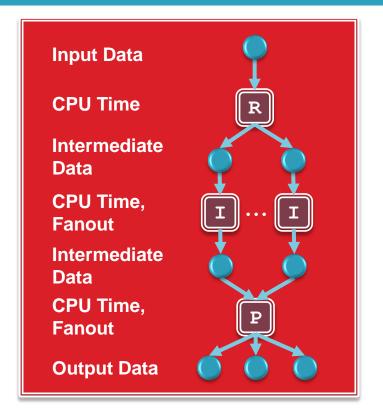
Fine grained workflow specs, evolving resource platforms pose overhead for users

Hypothesis —

Can we make intelligent resource platform selection with limited workflow information?

- Length
- Width
- Data In/Out

What are trade-offs of running applications on different platforms?


Workflow Characteristics

Structural Information

- Pattern: Sequential, Fork-Join, Control flow
- Length: # of stages, length per stage, total length
- Width: Fanout

Resource Usage

- Data: In/Out
- Compute: Cores required

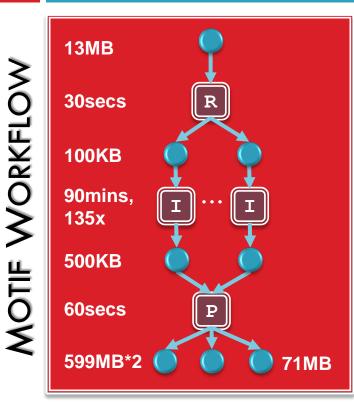
Resource Platforms & Characteristics

Desktop

- Full application control
- Growth of multi-core
- eScience beats Moores Law

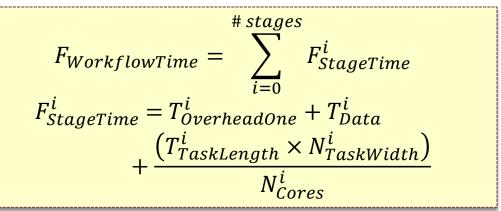
Cluster

- Small-Mid Clusters (~256 core)
- Under-subscribed, instant use
- Large science apps don't fit


HPC

- Shared, national centers
- Large # of cores (>1000)
- Over-subscribed queues, policiesCloud
- Infra. & Platform as Service
- On-demand, customizable
- Virtualization impact, Bandwidth

• Available cores • Queue/VM Latency • N/W Bandwidth • Core Speed

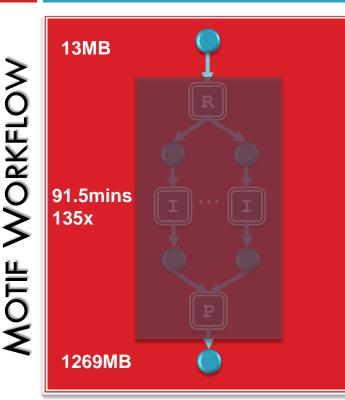

PLATFORM SELECTION FOR WORKFLOWS

Whitebox Selection (Fine Grained)



 Full workflow & Task details available
 Total runtime due to CPU Time I/O data transfer Queue/VM Overhead

Time is from by each independent task



Graybox Selection (Hybrid)

Workflow Stage details available Stages opaque. No task details available. Time is from by each independent stage Overhead time only for longest stage Queue/VM times pipelined *# stages* $F_{WorkflowTime} = T_{OverheadMax} + \sum_{i=0}^{i} F_{StageTime}^{i}$ $F_{StageTime}^{i} = T_{Data}^{i} + \frac{\left(T_{StageLength}^{i} \times N_{StageWidth}^{i}\right)}{N_{Cores}^{i}}$

Blackbox Selection (Coarse Grained)

Only Workflow outline details available

- Workflow internals opaque
- Total CPU Time Data xfer at boundary
- Overhead time for entire workflow
 - All required cores for workflow acquired

F_{WorkflowTime} $= T_{OverheadMax} + T_{Data}$ $(T_{WorkflowLength} \times N_{WorkflowWidth})$

eScience Workloads for Evaluation

MOTIF Network Workflow

- Gene regulation dependency networks
- Compute & data intensive
 - 13MB input, 1300MB output
 - 90mins long, 135 task wide
 - 3 Stages: Fork, Compute fanout, Join

GWAS Workflow

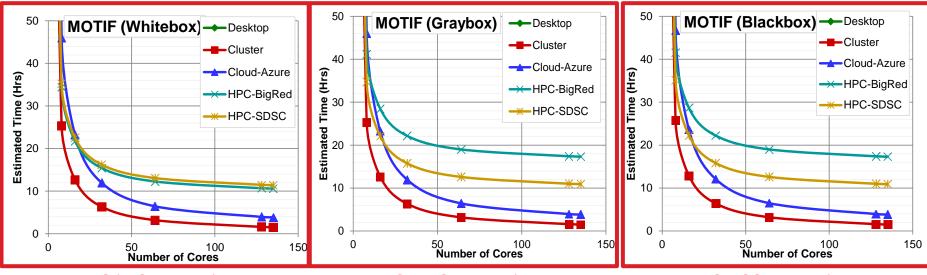
- Genome wide association study
- Compute intensive & wide
 - 150MB input, 160MB output
 - 19mins long, 1100 task wide
 - 6 stages: Two compute fanouts 1100 and 150 tasks wide

Resource Platforms for Evaluation

Local Workstation

- **1** Core, 2.5GHz
- All data local
- Local Cluster
- Up to 256 cores of 2.5GHz
- Data remote on client
- 1Gbps LAN bandwidth

Teragrid HPC Clusters

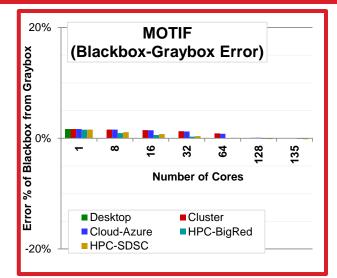

- SDSC & BigRed clusters
- 1 2048 cores of 2.5GHz
- NWS Batch Queue Prediction Service (95% Quantile)
- Data remote. 10Mbps WAN.

Azure Cloud

- Small VM, 1 core, 1.6GHz
- **v** W start time $\sim 200 + 20c$ secs
- Data remote. 10Mbps WAN.

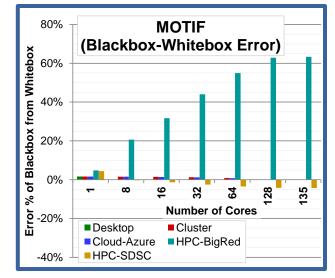
Results: Motif Workflow

Black & Graybox ordering of platforms same for different # cores
 Black & Whitebox ordering similar ... except for the two HPC's


Whitebox Estimate

Graybox Estimate

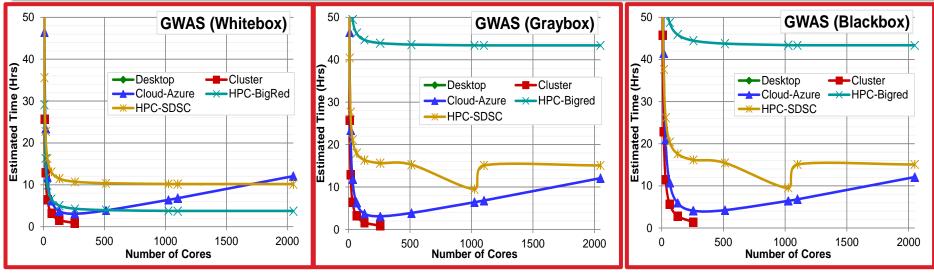
Blackbox Estimate


Results: Motif Workflow

Black & Graybox absolute difference is small across platforms

Blackbox – Graybox Absolute Difference

Black & Whitebox absolute difference for BigRed is large



Blackbox – Whitebox Absolute Difference

Results: GWAS Workflow

Blackbox & Whitebox ordering similar

- BigRed: 1 core job queue time in WBox faster than width-core job for BBox
- SDSC/Azure: Azure linear time; SDSC has step at 1024 cores for BBox

Whitebox Estimate

Graybox Estimate

Blackbox Estimate

Conclusions & Future work

- Runtime estimated from
 Blackbox good enough for relative comparison
 - Absolute values vary
- Queue overhead for task
 v. WF as a job has impact
 Azure linear, HPC step times
 Graybox ~= Blackbox

- More complex workflows
 - Simulation v. Calculation
- Synthetic workflow runs
 - Effect of each workflow attribute on estimate
- Other WF features that have impact
 - E.g. Min required cores per stage

Comparison of Resource Platform Selection Approaches for Scientific Workflows Yogesh Simmhan, Microsoft Research Lavanya Ramakrishnan, Lawrence Berkeley Lab Science Cloud Workshop, 2010

Acknowledgements

Dept of Energy | C. van Ingen, R. Barga, J. Listgarten **MSR** | K. Jackson, D. Agarwal **LBL** | E. Soroush **UW**