
Gabriela Turcu, Ian Foster, Svetlozar Nestorov

Reshaping Text Data for Efficient 
Processing on Amazon EC2



Outline
 Motivation 
 Goals:
 Determine empirically simple application 

performance model
 Statically provision resources to meet user 

constraints
 Reshape the input to avoid the small file problem

 Approach
 Sample Applications – grep, part of speech tagging

 Summary



Motivation
 Analysis of large corpora
 Online news collections
 Text generated by social networks – tweets, status 

updates, comments, reviews
 Scientific article abstracts, posters, slides



Text Datasets

 Heavy tail 
distribution
 Majority of files of 

a few KB



Text processing in the cloud
 The analysis of large corpora demands 

increasing computational resources:
 Cloud computing offers benefits:
 On-demand provisioned environment
 Pay-as-you-go pricing model
 Customizable virtual machines that can be easily configured 

to incorporate legacy software
 …and drawbacks:
 Infrastructure controlled by provider
 Environment volatility



Setting
 We have a large text workload, comprising of 

small files whose size distribution we know
 We do not have a model for the application 

performance in the cloud

 Can we construct empirically an application 
performance model to help provision resources 
within user constraints?

 Can we reshape the input data for improved 
performance? If so, what is the best 
organization?



Amazon EC2

 On-demand resizable computing capacity with a 
pay-as-you-go pricing scheme
 Instances (small,medium,large) with different CPU, 

memory and I/O performance
 AMI (Amazon machine images) with different 

configuration (32/64-bit architecture, 
Fedora/Windows/Ubuntu)



Amazon EC2 - storage
 Ephemeral
 Instance store - 160GB for a small instance

 Persistent 
 Elastic Block Store (EBS) volumes
 1GB to 1TB in size
 Exposed as raw block devices that can be ‘attached’ to 

instances
 Cannot be shared between instances
 Pay per GB/month and also per 1M I/O requests

 Amazon Simple Storage Service (S3)
 Unlimited number of objects up to 5GB each
 Multiple instances can access this storage in parallel with 

low latency (though higher and more variable than EBS)



Approach
 Request instance (small, FC8) and measure its 

read/write performance 
 Send probes of increasing volume to profile 

application
 Send probe of 1 file of volume V0 : P_ V0 _original
 Select larger volume V1 as a multiple of V0
 Create P_V1_original
 Select base unit sizes (s0,…,sn)
 Create P_V1_s0, …,P_V1_sn
using first fit binpacking

 Repeat binpacking for each probe
 Create P_V1_s0 and then merge 
to obtain remaining probes –
sensitive to quality of s0 probe

Volume

Time

Unit file size



Approach
 If possible, select a unit file size that minimizes the 

execution time
 Reshape the data set according to match the file size 

as closely as possible
 Splitting of a file not considered

 Derive a performance model as “execution 
time=f(vol)” performing linear regression on the 
measurements corresponding to the selected file size
 Linear y=ax
 Power law y=axb

 Exponential y=aebx



Part of Speech tagging
 Java implementation Stanford NLP POS tagger:

Mary_NNP has_VBZ 3_CD little_JJ lambs_NNS ._.

 Process multiple files within same JVM
 Data set:
 1GB of text data
 >40% of files are <1KB

 Small instance, instance storage



POS tagging
 V=1MB
 S0=1KB, …, Sn=500k

» Original size performs best



Performance Model
 Linear fit

 Solve for a deadline D=3600 (seconds) and 
obtain x0 – the volume of data predicted to be 
processed within D

 For volume V, provision to meet the deadline:



Static provisioning
Bin packing for i0=27 instances:
Sorted by file size 
Better fit, but fewer large files in the initial 

bins – performance was bad for larger files
Taken as presented
More likely to get a balance between # of 

files and size

» Other options can be explored



Initial results
 D=3600

 D=7200

» We could use fewer instances.



Random sampling
 Take random samples from the data and 

reevaluate performance model
 3 samples of 5MB – profile each sample

 The new slope is lower than the previous 



POS tagging – random sampling
 D=3600

 D=7200

» Tighter fit, but we overshoot the deadline! 



POS tagging
 We provisioned instances to exactly meet the 

deadline D (based on the model)
 Residuals are can be considered normally 

distributed
 Confidence interval analysis leads us to lower the 

deadline we provision for D=3600 -> 3124



Grep
 GNU grep 2.5.1
 100GB set of HTML files
 EBS storage
 CPU – I/O mix influenced by complexity of the 

search pattern
» Search for simple patterns – dictionary words

 Certain search modes and/or the likelihood of 
finding a match influences the amount of output 
generated
» Search for a nonsense word to traverse the entire 

input, but not generate output



Determining file unit size
 V=5GB

» 1M-2G range performs well



EBS performance
 Plateau not smooth
 EBS performance consistently worse for some 

data sets



Provisioning

 If the fragment volume > predicted volume
 Increase fragmentation level

 Othwerwise, 
 Attribute as much data to an instance as permitted 

by fragment volume multiples that fit into 



Results
 Model:
 D=3600



Summary
 Small scale experiments to learn application 

behavior on externally managed environment
 Determine if reshaping of input data set is 

beneficial
 Grep – I/O intensive, reshaped to larger file sizes
 POS tagging – memory intensive, reshaping not 

helpful
 Provision statically to meet user deadlines



Thank you!


