Zach Hill, Jie Li, Ming Mao, Arkaitz Ruiz-Alvarez, Marty Humphrey Department of Computer Science, University of Virginia

Early Observations on the
 Performance of Windows Azure

Applications in Azure

- The question is not can I build my application for the cloud, it's how to do it well
- How will it perform?
- Our focus
- How do Azure services perform?
- Experiments run between November, 2009 and February, 2010

A Typical Application Architecture

Deploying and Scaling Compute Resources

Deployment \& Scaling Compute Resources

- Methodology
- Application deployed from Azure Blob Storage
- Deployment package <5MB
- Measure time to start deployment (i.e. 4 small instances.)
- Measure time to double instance count
- Between Dec 17, 2009 and Jan 092010 we ran the experiment 431 times. Failure rate: 2.6%

Deploying: $1^{\text {st }}$ VM Instance Startup

time

Average Instance Adding Time

Scaling: Adding Instances

Scaling versus Startup for 4 Small Instances

Deployment \& Scaling Takeaways

- Deploying a VM takes around 10 minutestoo long?
- Adding instances takes much longer than initial deployment-even worse
- Larger instance types take longer to start \& web roles take longer than worker roles
- Not all instances will come online at the same time

Windows Azure Storage Services

- Blobs - Large, unstructured storage
- Tables - Semi-structured data, queries, updates, inserts, deletes
- Queues - FIFO, asynchronous messaging

Windows Azure Blob Service

- Large object storage - 50 GB or 1 TB limit depending on type
- Get/Put semantics
- Performance isolated between blob containers
- Methodology:
- Get a 1GB blob concurrently with 1-192 clients operating on the same blob
- Put 1GB blobs concurrently into same container

Windows Azure Blob Performance at Client

- Download more than $2 x$ upload speed
- Single, small client $\sim 100 \mathrm{Mb} / \mathrm{s}$

Windows Azure Blob Service Performance

Windows Azure Table Service

- Entity, Attribute, Value model
- Semi-structured, no schema
- Methodology:
- Perform 4 primary operations: insert, query, update, delete
- Each client operates on unique entities (rows) within the same shared partition
- Insert \& Query \& Delete: 500 ops/client
- Update: 100 ops/client
- ~220K entities in table for Query, Update, \& Delete

Windows Azure Table Service Performance

Windows Azure Queue Service

- Passing small (<=8K) messages in a FIFO style
- Get, Put, Peek operations
- Methodology: Single queue, concurrent clients get/put messages

Windows Azure Queue Service Performance

Direct TCP Communication

- TCP Endpoints allow Worker-to-Worker Role communication directly
- Offers a lower latency communication mechanism than message queves
- No intermediary required

Worker Role TCP-Endpoints

TCP Bandwidth Variance Over Time

- TCP performance can change dramatically, why?

Azure to Azure TCP Bandwidth over Time

Time

SQL Azure

- Normal SQL Server capabilities (RDBMS)
- Size limited to <50GB per database
- Tested with TPC-E benchmark for OLTP workload
- Our .NET implementation of the benchmark
- Simulates a brokerage house
- Testing DB is 3 GB in size

SQL Azure Performance

Single Thread TPCE Client
Local to LAN

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

Azure to Azure

SQL Azure Scaling (I)

Normalized average TPCE transaction time (only committed transactions)

SQL Azure Scaling (II)

Normalized Percent of Transactions Committed per Client Thread

General Recommendations \&

Conclusions

- Deployment size \rightarrow expected client slowdown and service throughput
- Deployment scaling is slower than initial deployment, web roles slower than worker roles, large VMs slower than small VMs
- VM deployment can take a long time depending on how many are requested
- Distribute blob accesses across as many containers as possible to achieve performance at scale

General Recommendations \& Conclusions (II)

- Access tables by partition and row key. Property filters are slow
- Tables scale well for query and insert, but watch out for delete and update - this is expected
- Expect SOL Azure $2 x$ slowdown
- SQL Azure scales reasonably well, especially under 30 or less concurrent clients
- SQL Azure performance over time: low variability

