Zach Hill, Jie Li, Ming Mao, Arkaitz Ruiz-Alvarez, Marty Humphrey Department of Computer Science, University of Virginia

Early Observations on the Performance of Windows Azure

Applications in Azure

- The question is not can I build my application for the cloud, it's how to do it well
- How will it perform?
- Our focus
 - How do Azure services perform?
- Experiments run between November, 2009 and February, 2010

A Typical Application Architecture

Deployment & Scaling Compute Resources

- Methodology
 - Application deployed from Azure Blob Storage
 - Deployment package <5MB</p>
 - Measure time to start deployment (i.e. 4 small instances.)
 - Measure time to double instance count
 - Between Dec 17, 2009 and Jan 09 2010 we ran the experiment 431 times. Failure rate: 2.6%

Deploying: 1st VM Instance Startup time

16 13.8 14 13.2 11.3 11.0 12 10.6 9.9 9.9 10 8.9 Minutes 8 Web 6 Worker 4 2 0 Small Medium Large X-Large VM Instance Size

Average Instance Adding Time

Science Cloud Workshop June 21st, 2010

Scaling: Adding Instances

Scaling versus Startup for 4 Small Instances

Science Cloud Workshop June 21st, 2010

Deployment & Scaling Takeaways

- Deploying a VM takes around 10 minutes too long?
- Adding instances takes much longer than initial deployment—even worse
- Larger instance types take longer to start & web roles take longer than worker roles
- Not all instances will come online at the same time

Windows Azure Storage Services

- Blobs Large, unstructured storage
- Tables Semi-structured data, queries, updates, inserts, deletes
- Queues FIFO, asynchronous messaging

Windows Azure Blob Service

- Large object storage 50GB or 1TB limit depending on type
- Get/Put semantics
- Performance isolated between blob containers
- Methodology:
 - Get a 1GB blob concurrently with 1 192 clients operating on the same blob
 - Put 1GB blobs concurrently into same container

Windows Azure Blob Performance at Client

- Download more than 2x upload speed
 Single, small client ~100Mb/s

Windows Azure Blob Service Performance

Windows Azure Table Service

- Entity, Attribute, Value model
- Semi-structured, no schema
- Methodology:
 - Perform 4 primary operations: insert, query, update, delete
 - Each client operates on unique entities (rows) within the same shared partition
 - Insert & Query & Delete: 500 ops/client
 - Update: 100 ops/client
 - ~220K entities in table for Query, Update, & Delete

Windows Azure Table Service Performance

Science Cloud Workshop June 21st, 2010

Windows Azure Queue Service

- Passing small (<=8K) messages in a FIFO style</p>
- Get, Put, Peek operations
- Methodology: Single queue, concurrent clients get/put messages

Windows Azure Queue Service Performance

Direct TCP Communication

- TCP Endpoints allow Worker-to-Worker Role communication directly
- Offers a lower latency communication mechanism than message queues
 - No intermediary required

Worker Role TCP-Endpoints

Cumulative Percentage

Bandwidth Latency 100% 100% **Cumulative Percentage** 90% 90% 80% 80% 70% 70% 60% 60% 50% 50% 40% 40% 30% 30% 20% 20% 10% 10% 0% 0% ŝ **^**⁰ ଚ୍ଚ ଚ ŝ о Х γ^{0} \sim° ଡ 0 60 80 0 40 20 100 **MB**/sec RTT ms

TCP Bandwidth Variance Over Time

TCP performance can change dramatically, why?

SQL Azure

- Normal SQL Server capabilities (RDBMS)
- Size limited to <50GB per database</p>
- Tested with TPC-E benchmark for OLTP workload
 - Our .NET implementation of the benchmark
 - Simulates a brokerage house
 - Testing DB is 3GB in size

SQL Azure Performance

SQL Azure Scaling (I)

Normalized average TPCE transaction time (only committed transactions)

Science Cloud Workshop June 21st, 2010

SQL Azure Scaling (II)

Normalized Percent of Transactions Committed per Client Thread

Science Cloud Workshop June 21st, 2010

General Recommendations & Conclusions

- Deployment size → expected client slowdown and service throughput
- Deployment scaling is slower than initial deployment, web roles slower than worker roles, large VMs slower than small VMs
- VM deployment can take a long time depending on how many are requested
- Distribute blob accesses across as many containers as possible to achieve performance at scale

General Recommendations & Conclusions (II)

- Access tables by partition and row key. Property filters are slow
- Tables scale well for query and insert, but watch out for delete and update – this is expected
- Expect SQL Azure 2x slowdown
- SQL Azure scales reasonably well, especially under 30 or less concurrent clients
- SQL Azure performance over time: low variability