
Migrating a (Large) Science Database to the Cloud 
Ani Thakar 

The Johns Hopkins University 
Institute for Data Intensive Engineering and Science, 

3701 San Martin Drive,  
Baltimore MD 21218-2695  

(410) 516-4850 

thakar@jhu.edu 

Alex Szalay 
The Johns Hopkins University 

Institute for Data Intensive Engineering and Science, 
3701 San Martin Drive,  

Baltimore MD 21218-2695 
(410) 516-7217 

szalay@jhu.edu 
 

ABSTRACT 

We report on attempts to put an existing scientific (astronomical) 
database – the Sloan Digital Sky Survey (SDSS) science archive 
[1]  - in the cloud.  Based on our experience, it is either very 
frustrating or impossible at this time to migrate an existing, 
complex SQL Server database into current cloud service offerings 
such as Amazon (EC2) and Microsoft (SQL Azure).  Certainly it 
is impossible to migrate a large database in excess of a TB, but 
even with (much) smaller databases, the limitations of cloud 
services make it very difficult to migrate the data to the cloud 
without making changes to the schema and settings (for example, 
inability to migrate a spatial indexing library, and several other 
user-defined functions and stored procedures) that would 
invalidate performance comparisons between cloud and on-
premise versions.   

Without being able to propagate the performance tuning and other 
optimizations to the cloud, it is perhaps not surprising that the 
database performs poorly in the cloud compared with our on-
premise servers, but preliminary performance comparisons show a 
very large (an order of magnitude) performance discrepancy with 
the Amazon cloud version of the SDSS database.   We have also 
not yet investigated the performance tweaks that could be possible 
within the cloud.   

Although we managed to successfully migrate (a subset of) the 
SDSS catalog database to Amazon EC2, once it was in the cloud 
we were not able to access the database in a meaningful way from 
the outside world.  Even though this was advertised as a public 
dataset on the AWS blog, it was not clear how other users or the 
public would be able to access this data in a meaningful way, if at 
all. 

These difficulties suggest that much work and coordination needs 
to occur between cloud service providers and their potential 
database clients before science databases can successfully and 
effectively be deployed in the cloud.  It is important to note that 
this is true not just of large scientific databases (more than a 
Terabyte in size) but even smaller databases that make extensive 
use of the full complement of database management system 
(DBMS) features for performance and user convenience. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – Distributed 
Databases.  

General Terms 
Your general terms must be any of the following 16 designated 
terms: Management, Performance. 

Keywords 
Databases, Cloud, Scientific Databases, Data in the Cloud. Cloud 
Computing 

1. INTRODUCTION 
The hosting of large digital archives of scientific data for 
indefinite online access by a large and worldwide user community 
is a daunting undertaking for most academic institutions and 
scientific laboratories, especially because it is inevitably under-
budgeted in the project planning.  Any dent that cloud computing 
services [2] can make in this regard would be most welcome.   

As a case in point, the main site of the Sloan Digital Sky Survey’s 
Catalog Archive Server (CAS) [3] at FermiLab is hosted on a 
cluster of 25 commodity class servers connected to over 100 TB 
of storage, with 2.5-3 FTE operational resources committed to 
supporting the archive and maintaining high availability.  This 
includes support for multiple copies and versions of what is 
essentially a 5 TB database. 

The CAS is essentially a Microsoft SQL Server DBMS containing 
the SDSS Science Archive data.  The Science Archive contains 
essentially all the reduced data and science parameters extracted 
from the raw (binary) data obtained at the telescope.  These data 
and parameters are then loaded into the SQL Server database 
using a semi-automated loading pipeline called sqlLoader [4].   
There are two views of the Science Archive data.  In addition to 
the CAS, there is also a Data Archive Server (DAS) [5] analogous 
to the CAS that provides users access to the raw (file) data in a 
binary format popular among astronomers.  Users can download 
tarballs of the file data from the DAS using wget and rsync. 

The enormous size of the SDSS Science Archive (information 
content larger than the US Library of Congress and a thousand-
fold increase in data over all previous archives combined) made it 
completely unusable only as a file-based archive.  The ability to 
search the data quickly and extract only the desired parameters 
was absolutely essential in order to deliver the true potential of a 
dataset unprecedented in size and richness.  The SDSS 
collaboration decided at the outset to extract the science data into 
a DBMS and make it available through the CAS.  In addition to 
the data tables, the CAS contains extensive usability and 
performance enhancements that make its schema quite complex 
and difficult to port to other DBMS platforms.  This complexity is 
also a big obstacle for migrating the database to current cloud 
platforms. 

Although the production configuration of the CAS at FermiLab 
deploys multiple copies of a given SDSS database (e.g. DR6) on 
different CAS servers for load balancing, for the purposes of the 
tests described here, we are comparing a single DR6 database on a 



single dedicated (and isolated) server to compare with the cloud 
instance of the same data.  At least to start with, we wanted to see 
how one of our high end servers would stack up against a cloud 
implementation. 

To date, we have attempted to migrate the DR6 data to two 
commercial cloud computing services that provide SQL Server 
database hosting within the cloud – Amazon Elastic Cloud 
Computing (EC2) and Microsoft SQL Azure.  This paper 
describes our experiences with each of these cloud services. 

2. SDSS DATA ON AMAZON EC2 
The primary motivation for deploying SDSS data in the cloud was 
to compare cost-effectiveness and performance of hosting and 
accessing the data in the cloud.  Although databases have been 
deployed in the EC2 cloud before, ours was the first attempt to put 
a reasonably large SQL Server database in the cloud.  In fact, this 
attempt got off the ground when Amazon approached us and said 
they were interested in hosting SDSS as one of the public datasets 
on the Amazon Web Services (AWS) site. 

Amazon EC2 (http://aws.amazon.com/ec2/) is a Web service that 
provides resizable compute capacity in the cloud.  EC2 is billed as 
a true virtual environment that provides a Web services interface 
to: 

• launch instances of a variety of operating systems, 

• load them with custom application environments, 

• manage your network’s access permissions, and 

• run your image (see AMI below) with as many systems as 
you like. 

Amazon Elastic Block Store (EBS) provides block level storage 
volumes for use with Amazon EC2 instances.  The storage 
persists independently of the life of the instance.  EC2 instances 
and EBS volumes are created and administered from the AWS 
Management Console (http://aws.amazon.com/console/), using 
your Amazon account (if you have an account on amazon.com for 
shopping, you can use that account and have service charges 
billed to your Amazon credit card).  

The AWS model is that the database is stored as a “snapshot” (i.e. 
a copy taken at a point in time) available on the AWS site, and if 
it is a public (free) dataset like SDSS, it is advertised on the AWS 
blog (http://aws.typepad.com/). Although snapshots are 
supposedly differential backups, they can also be used to 
instantiate new EBS volumes.  Anyone can then pull the snapshot 
into their AWS account to create a running instance (at this point 
they start incurring AWS charges).  Multiple instances have to be 
deployed manually.  Since deploying one instance entails a 
number of steps (Figure 1), this can become time-consuming and 
cumbersome. 

In order to create a running instance of a SQL Server database on 
EC2, you first have to create the storage you need for the database 
by creating an EBS volume.  This is done by instantiating your 
snapshot as an EBS volume of the required size (we selected 200 
GB as the volume size, which is a “big” volume).  Then you select 
a SQL Server 2005 (now 2008 must be available too) Amazon 
Machine Image (AMI) for the dataset snapshot available on AWS, 
and create an instance of this AMI.  Next you attach this instance 
to the EBS volume, which creates a running instance.  Finally, 
you create an elastic IP for this instance so the outside world can 

connect to it. It is not possible to set up a SQL Server cluster 
within the cloud (i.e. interconnect multiple instances), as far as we 
know (this may be possible with Amazon Virtual Private Cloud).  

Figure 1. Steps needed to create an Amazon EC2 instance of 
the 100 GB SDSS subset database (numbered from 1 to 5).  
These steps must be repeated for each instance in the cloud. 

As mentioned above, the full SDSS (Data Release 7) dataset is 5 
TB in size.  Amazon EC2 is limited to a maximum of 1 TB per 
instance for the size of database they can host.  So right off the 
bat, it was clear that they would not be able to host the full SDSS 
database, since we did not have an easy way of splitting up the 
dataset into 1 TB slices as yet.  Although we will have the ability 
to partition the dataset in the future, presumably the layer to 
reduce these to one logical dataset would have to be outside the 
cloud.  Regardless, we are still interested in investigating the 
current cloud environment to see how easy it is to deploy a 
database to it and how it performs, how usable it is, etc.   Indeed, 
we anticipate that it should be possible in the near future to deploy 
the whole SDSS database to AWS and other cloud environments. 

In order to have a dataset that was large enough to provide a 
realistic test of performance and scalability, but also not be too 
large so that it would be expensive and time consuming to run our 
tests, we chose a 100 GB subset of the SDSS DR6 database (the 
full DR6 database is about 3.5 TB in size).  This ~ 1/35th size 
subset is generated by restricting the sky area covered by the data 
to a small part of the total sky coverage for SDSS, i.e. a few 100 
sq degrees rather than thousands of square degrees. 

2.1 Migrating the Data 
With most of the other databases on AWS, the assumption is that 
users will set up their own database first and then import the data 
into it.  In our case, since we had a pre-existing (and large) 
database with a complex schema, it made much more sense for us 
to migrate the database in one piece to the EC2 virtual server.    
There are two ways to do this – either with a SQL Server backup 
of the database at the source and a corresponding restore in the 
cloud, or by detaching the database and copying the data file(s) to 
the cloud volume.  For the AWS snapshot model, the latter was 
the more suitable option, so we chose that. 

2.2 Performance Testing 
We have a 35 query test suite that we routinely use to test and 
benchmark SDSS servers [6].  The queries are all encoded in a 
single SQL Server stored procedure – spTestQueries – that can be 
set up to run the whole suite as many times as desired.  The 

http://aws.amazon.com/ec2/�
http://aws.amazon.com/console/�
http://aws.typepad.com/�


queries range from spatial (radial “cone” search) queries to 
complex joins between multiple tables.  For each query executed, 
three performance counters are measured – the elapsed time, the 
CPU seconds and the physical IO. 

Although the production CAS site at FermiLab contains 25 
database servers, each server has one copy of a given SDSS 
database, and load-balancing and performance is achieved by 
segregating different workloads among different servers.   As 
such, we only need to compare the performance of a single 
instance/server of the database inside and outside the cloud, at 
least to a first approximation.  

The test query suite generally assumes that the server it is running 
on is isolated and offline, and also that certain performance 
enhancements are in installed, foremost among them being the 
Hierarchical Triangular Mesh (HTM) spatial indexing library [7] 
that provides fast (O(log N)) spatial searching.  The library is 
implemented in C# and used the SQL-CLR (Common Language 
Runtime) binding along with some SQL glue functions.  

Figure 2 shows the comparison between running this test suite on 
our GrayWulf [8][9] server and on the instance of the database on 
EC2.  Only the query elapsed time (in seconds) is shown in the 
plot, and the differences are large enough that a logarithmic scale 
was required to plot the times.   The EC2 elapsed times are on 
average an order of magnitude larger than the ones we obtained 
on the GrayWulf (single) server instance.  The difference could be 
due a number of factors, such as the database settings on the EC2 
server (memory, recovery model, tempdb size etc.) as well as the 
disk speeds. 

 
Figure 2.  Comparison of query elapsed time for the 100-GB 
SDSS subset on our GrayWulf server (GW) and EC2.  We ran 
35 test queries (alternate query numbers are shown) from our 
test query suite on each database.  The elapsed times are in 
seconds. 

The purpose of this comparison is not to draw a definitive 
conclusion about the relative performance of the two types of 
instances, but rather to indicate that the performance in the cloud 
can be disappointing unless it can be tuned properly.  We only 
used the default settings for the most part on EC2, and it might 
have been possible (assuming the privileges were available) to 
tweak the performance settings to our benefit. 

2.3 Data Access 
The public SDSS dataset on AWS was meant to serve two kinds 
of users on: 

a) People who currently use the SDSS CAS 
b) General AWS users who were interested in the data 

For a), we needed to be able to replicate the same services that 
SDSS currently has, but using a SQL Server instance on EC2 and 
connecting to it with the elastic IP resulting from the process 
described in Figure 1.  This should in theory work fine, although 
we were unable to make the connection work during our tests.  
Although we were able to log in to the EC2 server fine using a 
Windows remote desktop client, we could not connect to the 
elastic IP using a SQL OLEDB (a Microsoft protocol that allows 
applications to connect to SQL Server using a connection string) 
connection, and hence could not connect a SkyServer Web 
interface [6] to it. 

For b), users should have everything they need on the AWS public 
dataset page for SDSS, but here was the rub: it was quite a 
complex set of maneuvers that a potential user (by user here we 
mean someone who wants to provide access to the SDSS 
database, not an end-user; so for example JHU would be a user) 
would have to execute is a quite daunting (see Figure 3).  The 
most difficult part by far is “porting the SDSS data to another 
database (platform)”.  SQL Server EC2 instances should not be 
difficult to create and provide access to.  (As an interesting aside, 
AWS also made the SDSS public dataset available as a LINUX 
snapshot, which did not make sense to us since SQL Server 
cannot run on LINUX). 

 
Figure 3. A description of the procedure required to use the 
SDSS public dataset as provided on the AWS blog.    

2.3.1 Cost of Data Access 
Another important aspect of using EC2 (or any other cloud) 
instances of datasets like SDSS is the cost-effectiveness of the 
data access.   We do not have any useful information to contribute 
on this as yet, partly because we were unable to get the Web 
interface connection to work.  We incurred charges of nearly $500 
for our experiments, without actually providing any remote data 
access.  Basically, all we did was create the instance and run our 
performance test queries on it.  The duration of the tests was a few 
weeks all told, and the database was idle for part of the time while 
we were busy with other commitments.  Most of the charges were 
for “EC2 running large Windows instance with Authentication 
Services”.   The EBS storage and other miscellaneous charges 
were negligible by comparison, even though we had a 200 GB 
EBS volume in use for all that time.  This would indicate that 
licensing costs for third party software (in this case Windows 
Server and SQL Server) is the dominant factor.  If that is indeed 
the case, this could potentially make it infeasible to put science 
datasets like SDSS in the cloud. 

3. SDSS DATA ON MICROSOFT  SQL 
AZURE 
This is really a work in progress.  At this time we are not able to 
report on performance specifics, but hopefully soon.  In the 
meantime, it is instructive to look at some of the difficulties we 
have experienced in migrating the data to the Azure Cloud. 

3.1 Migrating the Data 

0.1

1

10

100

1000

10000

Q
01

   
  

Q
03

   
  

Q
05

   
  

Q
07

   
  

Q
09

   
  

Q
10

A
   

 

Q
12

   
  

Q
14

   
  

Q
15

B
   

 

Q
17

   
  

Q
19

   
  

Q
S

X
01

   

Q
S

X
03

   

Q
S

X
05

   

Q
S

X
07

   

Q
S

X
09

   

Q
S

X
11

   

Q
S

X
13

   

GW_Elapsed EC2_Elapsed



Although the creation of a SQL Azure project yields a SQL 
Server instance and an IP address for it, there currently appears no 
way to directly move a database “as is” or en masse into the 
cloud, even if the database is first upgraded to the proper SQL 
Server version (in this case SQL Server 2008).  The SQL Azure 
instructions and labs offer two options for moving data into the 
cloud: using the built-in database scripting facility in SQL Server 
2008 to script the schema and data export, and using the bulk 
copy utility (BCP) to copy data from the on-premise database to 
Azure.  Given the nature of the SDSS schema and data, for 
example the heavy reliance on indexes, stored procedures and 
user-defined functions as well as the CLR (common language 
runtime) assemblies used for the spatial indexing library, both of 
these options are fraught with problems.   Using the scripting 
option, we ran out of memory while generating the script!  In fact, 
even if the script had been generated successfully, according to 
the instructions it needs to be then edited manually to remove 
features not supported by SQL Azure. 

3.1.1 SQL Azure Migration Wizard 
There is, in fact, a third option that the instructions do not 
explicitly mention (or if they did, we missed it!).  At the moment, 
we are using the SQL Azure Migration Wizard (SAMW - 
http://sqlazuremw.codeplex) to move the data into Azure. SAMW 
actually does an admirable job of automating the migration task. 
However, as we shall see, this does not eliminate our problems. 

As in the case of the first migration option (using SQL Server 
built-in scripts), SAMW removes any schema elements that are 
not supported by Azure.  Many functions and stored procedures in 
the SDSS schema do not get ported to the Azure copy of the 
database.  This makes it very difficult to compare the deployment 
to say the AWS version.  One has to go through the voluminous 
SAMW trace (Figure 4) to find all the errors it encountered.  
Some of the unsupported features that prevent these functions and 
stored procedures from being migrated are: 

• References to other databases – this is a minor inconvenience 
which we can work around by simply deleting references to 
other databases in most cases.  In some cases, it is not so 
easy to work around it, for example where it prevents the use 
of the command shell from within SQL Server (the shell 
must be invoked via the master database).  This means that 
we cannot run command (including SQL) script files from 
SQL Server.  However, for now we are ignoring these issues 
and soldiering ahead. 

• Global temp objects – this prevents the test query stored 
procedure (spTestQueries) from being migrated in its 
original form.  The procedure uses global temp variables to 
record the performance metrics.  A workaround for this is not 
trivial because this is one of the main functions of the test 
script. 

• T-SQL directives – these are special directives in the SQL 
Server SQL dialect (Transact-SQL or T-SQL for short) to 

control how certain commands or procedures are executed, 
e.g., to set the level of parallelism.  These are mostly 
performance related, but for admin tasks rather than user 
queries, so they can be ignored if necessary. 

• Built-in T-SQL functions – these are also mostly in admin 
functions and procedures, so not a big concern for now. 

• SQL-CLR function bindings – this is a big one, because this 
means we cannot use our HTM library to speed up the spatial 
searches. 

• Deprecated features – since our SQL code was mostly 
developed on an earlier version (SQL Server 2000), it 
contains some features deprecated in SQL Server 2008.  
These are not supported in Azure.  We will have to remove 
them, which is not a major problem since there are very few 
such cases, and it is good to remove them anyway in the long 
run. 

The bottom line is that migrating the data to the SQL Azure cloud 
currently involves stripping out several features that will at the 
very least impact performance of our database, and could 
potentially make some aspects of it unusable. 

3.2 Performance Testing 
Since this is a 10 GB subset (the actual size is actually closer to 6 
GB), the performance test results will be much more difficult to 
compare with the 100 GB and full size databases.  However, we 
aim to run the test query suite on the same database in and out of 
the cloud.  The major problem here though is the anticipated 
modifications that will be needed during the migration process 
due to the features not currently supported by SQL Azure (see 
above).  If changes are made to settings which affect the 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
Conference’10, Month 1–2, 2010, City, State, Country.  
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00. 

Figure 4. Screen shot of SQL Azure Migration Wizard session 
showing migration trace for SDSS DR6 10 GB subset.   Here 
“Target Server” is the Azure database server.  The wizard is 
running on our local SDSS server at JHU. 

http://sqlazuremw.codeplex/�


performance in a significant way, then it will not be possible to 
obtain a meaningful performance benchmark.  This is indeed 
emblematic of the difficulties in deploying and benchmarking 
large databases in the cloud at the moment. 

3.3 Data Access 
The IP-address that we created for the SQL Azure server allows 
us to connect to the server, and we have been able to connect to 
the Azure instance of the DR6 subset in two ways: 

1. We can hook up a SkyServer [6] client (Web interface) from 
outside the cloud using a SQL OLEDB connection.  
Although the full functionality of SkyServer queries is not 
available in the cloud version (due to the subset of supported 
features as mentioned above), we have been able to run a 
good fraction of the SDSS sample queries. 

2. We can also connect to the Azure instance as a database 
engine from a remote SQL Server Management Studio client 
using the admin user login that Azure provides.  This allows 
us to configure the database just as we would a local 
database.  We are using this mode of access to work around 
the Azure limitations, by creating kosher versions of 
functions and stored procedures as necessary.   

We will not have the data access costs until we address all the 
migration issues listed in §3.1.  For these tests we purchased a 10 
GB developers’ package which costs ~ $100/month and includes a 
certain amount of free data transfers in addition to the 10 GB 
storage and licensing costs. 

4. CONCLUSIONS 
We have so far migrated a 100 GB subset of a large astronomical 
database – the Sloan Digital Sky Survey science archive – to the 
Amazon EC2 cloud.  EC2 has a size limit of 1 TB per instance, so 
it was not possible for us to migrate the whole SDSS database 
(several TB) to it and perform a full test.  After much help from 
the Amazon experts, we were able to install an instance of the 
SDSS data in EC2 and run our test suite of 35 test queries on it.  
With only the default settings and a single EC2 instance, we found 
the query performance to be an order of magnitude slower than 
our on-premise GrayWulf server.  This was indicative of the need 
to either tine the EC2 performance settings or create more than 
one instance to get better performance.  Creating an EC2 instance 
was a multi-step process that needed to be followed for each 
instance.  After successfully creating an instance and testing its 
performance, we were unable to access the instance with the 
public IP-address (elastic IP) generated using the AWS 
instructions.  As such, the instance was not accessible from the 
outside world. 

We are in the process of migrating a much smaller (10 GB) subset 
of the same dataset to the Microsoft SQL Azure cloud (10 GB is 
the current size limit for Windows/SQL Azure).  The challenge 
with SQL Azure – other than the 10 GB size limit which is really 
too small to do any realistic tests – is that direct migration of the 
data is not possible at the moment, since SQL Azure supports a 
subset of database features and hence database migration must be 
scripted or done using special purpose utilities.  Even with these 
tools, the version of the database in the cloud is significantly 
altered and cannot support the full functionality of the original 
database.  It certainly cannot match the performance of the 
original version.  In fact it is not even possible to measure the 

performance of the migrated database in the same way as the 
original so as to make a meaningful comparison. 

At this time, it is not possible to migrate and access a scientific 
SQL Server database in the Amazon and SQL Azure clouds, at 
least based on our admittedly incomplete experiments.  Even as 
the limits on the database size expand in the near future, there are 
problems with migrating the data itself, and then providing the 
type of performance and access possible desired.  Beyond that, the 
licensing costs for software used in the cloud could become a 
significant issue.  We hope to have a more positive report soon as 
we continue to explore migrating science data to the cloud. 

5. ACKNOWLEDGMENTS 
Our thanks to the Amazon Web Services folks, in particular 
Santiago Alonso Lord, Deepak Singh and Jeffrey Barr (who 
maintains the AWS blog), for hosting a public dataset and for all 
their patient help in setting up and transferring SDSS data to EC2.  
Also thanks to Roger Barga (Microsoft Research) for his help 
with migrating data to SQL Azure, and pointing us to the SQL 
Azure Migration Wizard. 

6. REFERENCES 
[1] Thakar, A.R. 2008: “The Sloan Digital Sky Survey: Drinking 

from the Fire Hose”, Computing in Science and Engineering, 
10, 1 (Jan/Feb 2008), 9. 

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. 
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. 
Zaharia. Above the Clouds: A Berkeley View of Cloud 
computing. Technical Report No. UCB/EECS-2009-28, 
University of California at Berkley, USA, Feb. 10, 2009. 

[3] Thakar, A.R., Szalay, A.S., Fekete, G., and Gray, J. 2008: 
“The Catalog Archive Server Database Management 
System”, Computing in Science and Engineering, 10, 1 
(Jan/Feb 2008), 30. 

[4] Szalay, A.S., Thakar, A.R.,, and Gray, J. 2008: “The 
sqlLoader Data Loading Pipeline”, Computing in Science 
and Engineering, 10, 1 (Jan/Feb 2008), 38. 

[5] Neilsen, Jr., E. H.,. 2008: “The Sloan Digital Sky Survey 
Data Archive Server”, Computing in Science and 
Engineering, 10, 1 (Jan/Feb 2008), 13. 

[6] J. Gray, A.S. Szalay, A. Thakar, P. Kunszt, C. Stoughton, D. 
Slutz, J. vandenBerg. “Data Mining the SDSS SkyServer 
Database,” Distributed Data & Structures 4: Records of the 
4th International Meeting, pp 189-210 W. Litwin, G. Levy 
(eds), Paris France March 2002, Carleton Scientific 2003, 
ISBN 1-894145-13-5, also MSR-TR-2002-01, Jan. 2002: 
http://research.microsoft.com/pubs/64558/tr-2002-01.pdf. 

[7] Szalay,A., Gray, J., Fekete, G., Kunszt, P., Kukol, P., and 
Thakar, A., “Indexing the Sphere with the Hierarchical 
Triangular Mesh”, Microsoft Technical Report 2005,  
http://research.microsoft.com/apps/pubs/default.aspx?id=645
31  

[8] Szalay, A.S. et al. 2008, “GrayWulf: Scalable Clustered 
Architecture for Data Intensive Computing” Microsoft 
Technical Report MSR-TR-2008-187. 

[9] Simmhan, Y. et al. 2008, “GrayWulf: Scalable Software 
Architecture for Data Intensive Computing” Microsoft 
Technical Report MSR-TR-2008-186.

 

http://research.microsoft.com/apps/pubs/default.aspx?id=64558�
http://research.microsoft.com/apps/pubs/default.aspx?id=64558�
http://research.microsoft.com/pubs/64558/tr-2002-01.pdf�
http://research.microsoft.com/apps/pubs/default.aspx?id=64531�
http://research.microsoft.com/apps/pubs/default.aspx?id=64531�
http://research.microsoft.com/apps/pubs/default.aspx?id=64531�
http://research.microsoft.com/apps/pubs/default.aspx?id=64531�

	INTRODUCTION
	SDSS DATA ON AMAZON EC2
	Migrating the Data
	Performance Testing
	Data Access
	Cost of Data Access


	SDSS DATA ON MICROSOFT  SQL AZURE
	Migrating the Data
	SQL Azure Migration Wizard

	/Performance Testing
	Data Access

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

