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ABSTRACT 

Today, our picture of the Universe radically differs from that of 

just over a decade ago. We now know that the Universe is not 

only expanding as Hubble discovered in 1929, but that the rate of 

expansion is accelerating, propelled by mysterious new physics 

dubbed "Dark Energy." This revolutionary discovery was made by 

comparing the brightness of nearby Type Ia supernovae (which 

exploded in the past billion years) to that of much more distant 

ones (from up to seven billion years ago). The reliability of this 

comparison hinges upon a very detailed understanding of the 

physics of the nearby events. As part of its effort to further this 

understanding, the Nearby Supernova Factory (SNfactory) relies 

upon a complex pipeline of serial processes that execute various 

image processing algorithms in parallel on ~10TBs of data. 

This pipeline has traditionally been run on a local cluster. Cloud 

computing offers many features that make it an attractive 

alternative. The ability to completely control the software 

environment in a Cloud is appealing when dealing with a 

community developed science pipeline with many unique library 

and platform requirements. In this context we study the feasibility 

of porting the SNfactory pipeline to the Amazon Web Services 

environment. Specifically we: describe the tool set we developed 

to manage a virtual cluster on Amazon EC2, explore the various 

design options available for application data placement, and offer 

detailed performance results and lessons learned from each of the 

above design options. 

Categories and Subject Descriptors 

D.1.3 [Programming Techniques]: Concurrent programming – 

Distributed programming.  

General Terms 

Performance, Design. 

Keywords 

Cloud Computing, Distributed Systems, High Performance 

Computing, eScience. 

1. INTRODUCTION 
The goal of the Nearby Supernova Factory (SNfactory) 

experiment is to measure the expansion history of the Universe to 

explore the nature of Dark Energy with Type Ia supernovae, and 

also to improve our understanding of the physics of these events 

to improve their utility as cosmological distance indicators.  

Operating the largest data-volume supernova survey from 2004 to 

2008, SNfactory made and continues to make heavy use of high 

performance computing.  SNfactory maintains and operates a 

complex software pipeline using a local PBS cluster. However, as 

the volume of data increases, more resources are required to 

manage the search space for their application.  

Cloud computing [20] is an attractive alternative for this 

community of users for a variety of reasons. The pipeline consists 

of code packages developed by members of the community that 

have unique library and platform dependencies (e.g. preference of 

32 bit over 64 bit to support legacy code). This often makes it 

difficult to run in shared resource environments like 

supercomputing centers where the software stack is pre-

determined. In addition, the extraction algorithms that are a major 

component of the pipeline are constantly evolving and users  need 

the ability to use a fixed environment and make minor changes 

before running a new experiment. Thus, providing access to a 

shared environment to collaborators is critical to the user 

community.  

Cloud computing provides the ability to control software 

environments, allows users to control access to collaborators that 

need to access a particular setup and enables users to share 

environments through virtual machine images. These features 

address some of the challenges faced by the science users today. 

The requirements for the SNfactory community are not unique 

and represent the needs of a number of scientific user 

communities. Earlier studies have evaluated performance 

implications for applications on cloud environments and 

experimented with specific choices of deployment [12-16]. 

However, significant effort is required today for scientific users to 

use these environments and it is largely unclear how applications 

can benefit from the plethora of choices available in terms of 

instance types and storage options. 

In the context of the SNfactory we study the feasibility of Amazon 

Web Services (AWS) [4] as a platform for a class of scientific 

applications and detail the impact of various design choices. 

Specifically, (a) we describe the tool set we developed to manage 

a virtual cluster on Amazon EC2, (b) we explore the various 

 

 



design options available for application data storage, (c) we offer 

detailed performance results and lessons learned from each of the 

above design options. 

2. BACKGROUND 
Cosmology is the science of mapping out the history of the 

Universe back to the instant of its creation in the Big Bang. A 

complete history of the Universe spells out the origin of matter, 

formation of galaxies and clusters of galaxies, and the dynamics 

of space-time itself. Cosmology sets the stage for the story that 

explains our species' place in the Universe. 

Today, our picture of the Universe radically differs from that of 

just over a decade ago. We now know that the Universe is not 

only expanding as Hubble discovered in 1929, but that the rate of 

expansion is accelerating. This revolutionary discovery was made 

by comparing the brightness of nearby Type Ia supernovae (which 

exploded in the past billion years) to that of much more distant 

ones (from up to seven billion years ago). The more distant 

supernovae appeared dimmer than expected, and repeated 

experiments since the initial discovery have confirmed that the 

excess dimming is due to acceleration, propelled by new physics 

dubbed "Dark Energy" [17,18]. 

Type Ia supernovae are exploding stars --- as bright as an entire 

galaxy of normal stars --- whose relative brightness can be 

determined to 6% accuracy. They arise from a white dwarf star 

that accretes gas from a companion star and explodes at a critical 

mass equal to 1.4 times that of our Sun. This standard amount of 

fuel makes for a "standard bomb," hence Type Ia supernovae 

make excellent distance indicators due to the relatively small 

dispersion in brightness. Understanding the origin of these 

supernovae, how they explode, and how to better calibrate them 

as distance indicators is the goal of the US/France Nearby 

Supernova Factory experiment [9]. 

The SNfactory operated the largest data-volume supernova survey 

active during 2004-2008, using the QUEST-II camera on the 

Palomar Oschin 1.2-m telescope managed by the Palomar-

QUEST Consortium. Typically, over 50 GB of compressed image 

data was obtained each night. This data would be transferred from 

the mountain via radio internet link (on the High-Performance 

Wireless Research and Education Network) to the San Diego 

Supercomputing Center, and from there to the High Performance 

Storage System (HPSS tape archive) at the National Energy 

Research Scientific Computing Center (NERSC) in Oakland, 

California. The next morning, the night's data were moved to the 

Parallel Distributed Systems Facility (PDSF) cluster for 

processing, reduction, and image subtraction. Software identified 

candidates in subtractions using a variety of quality cuts and later, 

machine learning algorithms to identify real astrophysical 

transients and reject image/subtraction artifacts. Humans 

performed the final quality assessment step, saving and vetting 

candidates using historical and context data using a custom 

scientific workflow tool, SNwarehouse [11]. The entire process, 

from the start of data collection to human identification of 

candidates, took approximately 18 hours. 

Candidates in SNwarehouse were schedule for follow-up on the 

SNfactory's custom-designed and custom-built SuperNova 

Integral Field Spectrograph (SNIFS) installed permanently on the 

University of Hawaii (UH) 2.2-m telescope atop Mauna Kea. The 

SNIFS instrument and UH 2.2-m telescope are remotely 

controlled over a Virtual Network Computing (VNC) interface, 

typically from France where daytime corresponds to Hawaiian 

nighttime. An agreement with the University of Hawaii ensured 

that the SNfactory had 30% of the total observing time on the UH 

2.2-m for its supernova follow-up program. The result is that the 

SNfactory collaboration discovered, followed-up and is currently 

analyzing a new set of Type Ia supernovae in greater numbers 

and, through SNIFS, with greater precision than was ever possible 

before. Over 3000 spectroscopic observations of nearly 200 

individual supernovae are now ready for study. This data 

represents a wholly new potential for understanding Type Ia 

supernovae and using them to better measure the properties of 

Dark Energy. 

SNIFS was designed for the express purpose of obtaining precise 

and accurate spectrophotometric time-series observations of 

supernovae. This strategy is in marked contrast to other supernova 

surveys which utilize spectroscopy primarily as a one-shot means 

of classifying objects, and rely on multi-band photometric 

imaging observations (a lower-dimensionality data set) as 

principal science product. The challenge of precise 

spectrophotometry dictated SNIFS design and the follow-up 

strategy. For example, SNIFS basic design is that of an integral 

field spectrograph, meaning that the entire field of view 

containing a supernova is segmented into spatial chunks that are 

each dispersed to produce a spectro-spatial data-cube. Most 

supernova spectroscopy is performed with a slit spectrograph, 

where care must be taken to avoid wavelength dependent slit-loss 

of photons that the SNIFS design avoids completely by capturing 

all the supernova light. Also, the decision to pursue guaranteed 

telescope time and permanently mount SNIFS means that 

SNfactory has unfettered access to it at almost any time for any 

type of calibration experiment that can be conceived and executed 

remotely. However, the custom design of the instrument means 

that the extensive software code-base for reduction and analysis of 

the data is designed and implemented by collaboration members 

(scientists, postdocs, and students), from robotic 

instrument/telescope control to data reduction and analysis. 

Several candidate implementations for various steps in data 

reduction may need extensive validation before one is selected 

(alternatives developed may also be held in reserve for hot-

swapping). The general picture of the SNIFS data reduction 

"pipeline" (referred to here as “IFU”) seems quite typical of many 

other scientific collaborations which depend heavily on software, 

computing, and data analysis with custom instrumentation: Codes 

and scripts, running in a Linux/Unix batch-queue environment, 

controlled by scripting (e.g. Python) wrappers that coordinate 

work through a database or meta-data system.  

SNIFS reduction tasks include standard CCD image preprocessing 

(bias frame subtraction to remove electronics artifacts, flat-

fielding to map pixel-to-pixel response variations and bad pixels, 

scattered-light background modeling and subtraction), wavelength 

and instrument flexure corrections (solving for 2D instrument 

distortions using arc-lamp exposures), mapping 2D CCD pixel 

coordinates into 3D (wavelength, x, y) data cubes. Low-level 

operations include digital filtering, Fourier transforms, full matrix 

inversions, and nonlinear function optimization. These lower level 

operations are mostly performed in a mixture of C, C++, Fortran 

and Python. The current raw data set is approximately 10 TB, but 

after processing this balloons to over 20 TB and is expected to 



continue to grow. The pipeline is heavily dependent on external 

packages such as CFITSIO [6], the GNU Scientific Library (GSL)  

[7] and Python libraries like scipy and numpy (which in turn also 

depend on BLAS [5], LAPACK [10], etc). The whole pipeline is 

"process-level" parallel: Individual codes are not parallel so 

parallelism is achieved by running large numbers of serial jobs to 

perform the same task using different inputs. Since late 2007 the 

SNIFS flux-calibration pipeline has been running on a large Linux 

cluster at the IN2P3 Computing Center in Lyon, France --- a 

facility shared with a number of other high-energy physics 

experiments, most notably ones at the Large Hadron Collider 

(LHC). 

The SNfactory's dependence on large, shared Linux clusters at 

NERSC and CCIN2P3 revealed a number of previously 

unanticipated issues. In both cases, 24/7 support (especially 

weekends) is unavailable except in cases of emergency --- and 

what constitutes an emergency to a scientific experiment may not 

register as such to cluster management personnel. This issue could 

be ameliorated if each experiment simply managed its own mid-

sized or large cluster, but this would obviate the economy of scale 

gained through a central computing resource. A compromise 

would be to give users root or privileged access to the system, but 

security problems obviously rule that out. Also, decisions made 

by cluster management are necessarily driven by general policy 

and cannot be easily tailored to fit every need of every 

experiment. For example, at CCIN2P3, the entire operating 

system and software architecture is rolled over roughly every 18 

months --- this change is not transparent to users, and experiments 

without a cadre of software experts must draft their scientists into 

debugging and rewriting lines of code just to adjust to newly 

added or changed dependencies. A cynical interpretation by 

scientists of this practice might be "if it ain't broke, break it," but 

these users generally recognize the benefit of adapting to new 

systems and architectures, but want to make those changes when 

they can afford to and can profit. From a financial standpoint, 

using scientists to debug code is a suboptimal allocation of limited 

funds. 

Because of these issues and others, the SNfactory seized the 

opportunity to experiment with cloud computing and 

virtualization in general, with the Amazon Elastic Compute Cloud 

(EC2) [2]. Key aspects that were initially attractive to SNfactory 

include: 

 Ability to select any flavor of Linux operating system. 

 Options for architecture: 32-bit operating systems for 

legacy code. 

 Capability to install familiar versions of Linux binary 

packages. 

 Capacity to conveniently install third-party packages 

from source. 

 Access as super-user and shared access to a "group" 

account. 

 Immunity to externally enforced OS or architecture 

changes. 

 Immediate storage resource acquisition through EBS 

and S3. 

 Economy of scale and reliability driven by market 

demands. 

3. DESIGN 
Porting a scientific application like the SNfactory pipeline to the 

Amazon EC2 framework requires the development of some 

infrastructure and significant planning and testing. The pipeline 

was designed to operate in a traditional HPC cluster environment, 

hence first we we began ported the environment into EC2. Once 

that was completed, we began to decide where to locate our data, 

what size compute resources to use, and then conducted tests to 

validate our decisions. 

3.1 Virtual Cluster Setup 
The SNfactory code was developed to run on traditional HPC 

clusters. It assumes that a shared file system exists between the 

nodes, and that there is a head node that controls the distribution 

of work units. However, the Amazon EC2 environment only 

supports the creation of independent virtual machine instances 

that boots appropriate instances. To make it easier to port the 

SNfactory pipeline, we developed the ability to create virtual 

clusters in the EC2 environment. A virtual cluster connects a 

series of virtual machines together with a head node that is aware 

of all of the worker nodes, and a shared file system between the 

nodes. 

To provide a persistent shared file system, we created an Amazon 

Elastic Block Storage (EBS) volume [1]. EBS provides a block 

level storage volume to EC2 instances that persists independently 

from the instance lifetimes. On top of the EBS volume we built a 

standard Linux ext3 file system. We were then able to have our 

head node export this file system via NFS to all of the virtual 

cluster nodes. 

To setup a virtual cluster we tried two different techniques. The 

first technique we tried involved customizing the virtual machine 

images for each role. A custom image would be made that knew 

how to attach the EBS volume, start all of the worker nodes, and 

then export the EBS volume over NFS. While this approach had 

the advantage of simplicity for the end user, it quickly became 

apparent that it introduced a large burden on changing the 

environment. Any time a change was made, a new machine image 

had to be saved, and all of the other infrastructure updated to use 

this new image.  

Instead of this approach, we decided to use a series of bash scripts 

that utilize the Amazon EC command-line tools. All of the state is 

now kept in these scripts, and standard machine images can be 

used. During the setup of a virtual cluster, we first instantiate an 

instance that will become the head node of the virtual cluster, to 

this node we then attach the EBS volume. Once this is complete, 

we instantiate each of the worker nodes. For each work node, we 

write its private IP address into the head nodes /etc/exports file. 

This file controls the addresses the NFS server will export to. The 

private IP addresses are also written out into a MPI machine file. 

The head node uses this file to decide where to send work units. 

After these files are written, the NFS server is started on the head 

node and the proper mount commands are executed on the worker 

nodes. At this point in time our virtual cluster setup is completed 

and we are ready to begin running the SNfactory jobs. 



3.2 Data Placement 
Once we had developed the mechanisms to create virtual clusters, 

we were faced with deciding where to store our input data, code, 

and output data. In a traditional cluster environment all data 

would be stored on the shared file system. In the Amazon Web 

Services environment we have two main choices for data storage. 

We can store data on the EBS volume that is shared between the 

nodes, or we can store our data in the Simple Storage Service (S3) 

[3]. S3 provides a simple web services interface to store and 

retrieve data from anywhere. To decide which of these options 

would provide the best performance at the cheapest cost, we ran a 

series of experiments that are described below. 

4.  EVALUATION 
The goal of our evaluation was to evaluate the various choices 

available to the end user through Amazon EC2 and study the 

impact on performance and corresponding cost considerations.  

4.1 Experimental Setup 
We undertook a series of experiments focused on I/O and CPU 

data-processing throughput to observe and characterize 

performance, explore scalability, and discover optimal 

configuration strategies for the SNfactory using a virtual cluster in 

the Amazon Elastic Compute Cloud. We were particularly 

interested in studying the EBS versus S3 storage trade-offs, and 

the effects of various I/O patterns on aggregate performance for 

realistic "runs" of spectrograph data processing. In addition, we 

concentrated on approaches that required only minimal coupling 

between the existing SNfactory IFU pipeline and EC2 resources; 

for example, invasive changes that would enable the pipeline to 

access S3 were ruled out but transparent NFS file access was not. 

Experiments were organized in a matrix by long-term storage 

option employed (EBS or S3) and whether or not I/O with long-

term storage was concurrent with data processing or segregated 

into phases that precede or follow it. Each experiment was first 

conducted using a cluster of 40 worker cores and repeated with 80 

worker cores. In each cluster, an additional node was allocated 

which attaches an EBS volume and serves it out to the workers via 

NFS. This configuration was used even when processing inputs 

and/or outputs involved S3 --- the NFS server was used to 

distribute the SNfactory pipeline's compiled binary executables 

and scripts to workers. We also address the implications of this 

strategy in our analysis. 

EC2 32-bit high-CPU medium instances (c1.medium: 2 virtual 

cores, 2.5 EC2 Compute Units each) were used in all experiments 

discussed. Test runs with small instances (m1.small: 1 virtual core 

with 1 EC2 Compute Unit) demonstrated that a cluster consisting 

of those instances is actually less cost-effective by a factor of two 

since the cost per core is the same but the wall-clock time 

required for processing is twice as long: 30% of physical CPU 

resources are available to a single m1.small instance where nearly 

95% are available to a single c1.medium instance. The relative 

cost ratio per core of 1:1 also holds in the Amazon EC2 spot-price 

market given the observed average spot-prices to date. However, 

it should be noted that this ratio is an ideal in the spot-market, 

where users declare a price above spot they are willing to pay. 

For profiling our cluster, we found the sysstat project's sar 

command [8] to be a very useful way to collect information on 

system performance with very low overhead (sampling every 15 

seconds results in a load of essentially 0.00 on an idle machine). 

The low overhead was not surprising as sar reads kernel data 

structure values (i.e. counters) via the /proc file-system. There are 

about 200 quantities sar samples in '-A' mode, which we used 

excluding collection of interrupt statistics on all 256 interrupts. 

The sar utility was run on the NFS server and all worker nodes in 

each experiment, and its output served as the primary source for 

our measurements. 

The raw spectrograph data set itself is organized (in general but 

also in particular on EBS) in a nested directory tree by night of 

observation --- all files obtained in a given 24-hour period are 

contained in a single directory (an average of about 370 files per 

directory). Data files themselves are mostly FITS [19] format, a 

standard digital image format widely used in astronomy. The 

input data used to perform our EC2 experiments consists of raw 

spectrograph CCD images including science frames (supernovae 

and spectroscopic standard stars) as well as associated instrument 

calibration frames (internal arc and continuum lamp exposures for 

flexure and response corrections). The average size of a typical 

night's worth of spectrograph data is 2.7 GB. Other raw data files 

from the spectrograph include metadata text files, and an entire 

stream of FITS files from the photometric imaging channel, which 

is currently handled using a separate pipeline. Nonetheless, 

operations tested consist of most of the numerically intensive 

portions of the SNfactory spectroscopic pipeline. 

Table 1 Experimental Data Placement 

Experiment Input Data Output Data 

EBS-A1 EBS via NFS Local Storage to EBS 

via NFS 

EBS-B1 Staged to Local 

Storage from EBS 

Local Storage to EBS 

via NFS 

EBS-A2 EBS via NFS EBS via NFS 

EBS-B2 Staged to Local 

Storage from EBS 

EBS via NFS 

S3-A EBS via NFS Local Storage to S3 

S3-B Staged to Local 

Storage from S3 

Local Storage to S3 

4.2 Experiment Results 
In our description of the experimental results, we focus on 

detailed results from the 80-core runs, and rely on the smaller 40-

core runs to discuss scaling. The 80-core cluster is a reasonable 

approximation of the size of cluster the SNfactory expressed 

interest in using, as it puts within reach end-to-end processing of 

their entire multi-year data set (over 500 nights) on the timescale 

of a day or so. This ability is critical to the analysis, where 

differences in how early processing steps propagate down to 

changes in cosmological results. 

Table 1 summarizes the options used for data placement in the 

experiments discussed below. 

4.2.1 Experiments EBS-A1 and EBS-B1 
In experiment EBS-A1, the reduction pipeline running on each 

worker instance reads raw input files as they were needed directly 

from the EBS volume across NFS via the EC2 internal network. 

As automated data reduction proceeded, data output products 

(usually further FITS files) were deposited in worker local 



ephemeral storage. When all of the processing was complete on a 

worker, the output files were copied back to the EBS volume 

served by the NFS server node. Figure 1 provides a detailed view 

of the observed performance during EBS-A1.  

 

Figure 1 Experiment EBS-A1 NFS Server 

 

Figure 2 Experiment EBS-A1 Worker 

Figure 1 displays the measured network send and receive rates, 

disk read and write rates, and system load for the NFS server 

node. The red dashed lines in the top two panels trace the rates of 

transfer of input data to the worker nodes from the EBS volume. 

The periodic, decaying spikes of activity are a natural side-effect 

of the homogeneity of the input data: each set of files is the same 

size and the amount of time to process each is highly correlated. 

Perturbations in run-times cause the peaks to decay and disk 

access to spread out. File caching accounts for the difference 

between the network send and disk read curves, induced by 

duplication of nights across some worker cores (duplication is not 

used to observe caching in all experiments). During the first 3 

hours of the experiment, CPU load on the NFS server (bottom 

panel) is negligible, but as workers complete tasks and begin 

sending data back, the network receive and disk write (black solid 

lines), and system load climb rapidly. Data rates of over 40 MB/s 

are achieved, and the NFS server load climbs to around 10. This 

phase lasts for over 4 hours, longer than it took to process the 

data. The broad spike of data transfer to the NFS node just before 

2h into the experiment is the result of a "short" night of data --- a 

worker core completed processing and was able to send its results 

back to the EBS volume before the rest of the nights were 

completed. 

In Figure 2, we show the profile of disk and network activity for a 

typical worker node in the cluster. Disk writes on the worker (raw 

files from the NFS server) occur at punctuated intervals as the 

pipeline completes individual tasks on each set of inputs and gets 

the next set. During the phase where outputs are sent back to the 

NFS server, we see that the worker is competing with other 

workers in the cluster for access, as 40 MB/s of bandwidth must 

be shared across 80 cores. 

 

Figure 3 Experiment EBS-B1 NFS Server 

 

Figure 4 Experiment EBS-B1 Worker 

Experiment EBS-B1 repeated Experiment EBS-A1, except that 

raw input files were staged to worker ephemeral storage before 

processing began. In Figure 3, we see that the NFS server 

achieves a very high rate of transfer to the workers --- around 60 

MB/s reading from the EBS volume, and 80 MB/s sending the 

data out to workers (again caching explains the difference). The 

long transfer phase back to EBS is again observed, as expected. 

Note in Figure 4, one of the two cores of the worker node was 

responsible for a short night --- it was able to send its results back 

to the NFS server using all the bandwidth that is later shared by 

all 80 cores in the cluster, so here it enjoys superior network send 



and disk-read rates. The other night on the same node took longer 

to complete, and its output transfer lasted over an hour instead of 

a few minutes. 

4.2.2 Experiments EBS-A2 and EBS-B2 
For Experiment EBS-A2, the pipeline on each worker instance 

reads input files directly from EBS via NFS as in Experiment 

EBS-A1, but instead of caching the results and saving them to the 

EBS volume at the end of processing, they are saved back as they 

are produced. The point of the experiment is to determine whether 

interleaving the I/O with the data processing spreads out the I/O 

access patterns naturally to distribute bandwidth amongst worker 

cores.  

 

Figure 5 Experiment EBS-A2 NFS Server 

Figures 5 and 6 show this is simply not the case --- in fact, a very 

strong oscillatory pattern in the data transfer rates and system load 

on the NFS server. We suspected that the stream of EBS writes to 

the NFS server was reducing the ability of workers to read the 

next set of inputs, driving a synchronization where tasks could not 

begin until all data had been sent to the EBS volume. 

Investigating the situation on the workers revealed something 

similar to this hypothesis but not exactly the same.  

Some SNfactory pipeline components appeared to be taking a 

very long time to complete appointed tasks, but did not seem to be 

utilizing the CPU heavily. Using the strace command, we found 

that in at least one case, the scripts were taking a very long time to 

simply load from the NFS server. In particular, a scattered-light 

correction script written in Python was observed to take 12 

minutes simply to load as numerous modules in the form of 

shared objects, pure python, or compiled python were checked. 

Compiled binaries (say, written in C or C++) generally lauched 

much faster than the interpreted scripts (which drove the 

synchronization). 

Experiment EBS-B2 is a variation of EBS-A2, with raw input data 

being staged to worker local ephemeral storage before processing 

is launched. The same oscillatory pattern is observed as in EBS-

A2, and the NFS server network send and disk read rates were 

comparable to those observed in experiment EBS-B1.  

It is interesting to note that the 40-core runs did not exhibit the 

clear oscillatory behavior observed in the 80 core runs. This is 

true for both cases EBS-A2 and EBS-B2.  Evidently the 40-core 

runs were below a threshold where the start-up times for 

interpreted scripts became noticeably enlarged. 

 

Figure 6 Experiment EBS-A2 Worker 

4.2.3 Experiments S3-A and S3-B 
With the EBS-based experiments taking upwards of 7 hours to 

complete, with at least as much time spent on file system access as 

was spent on CPU usage, we investigated using Amazon S3 as the 

persistent storage mechanism for pipeline inputs and outputs. In 

Experiment S3-A, raw input data was read from the EBS volume 

but the outputs cached to S3 after processing was done. 

Experiment S3-B relied upon S3 both to provide raw inputs 

staged to worker local ephemeral storage, and for long-term 

storage of outputs.  

 

Figure 7 Experiment S3-A NFS Server 

In Experiment S3-A, we again see the decaying network send and 

disk read rates on the NFS server in Figure 7. As no outputs are 

being sent back to the EBS volume there is no measured net 

receive or disk write rate. On the worker, as depicted in Figure 8, 

processing for one of the two nights completes about a half hour 

before the other and its transfer to S3 begins (and the load drops 

by 1). All data products are sent to S3, as observed by sar within 

much less than an hour. By using S3 as the destination of the 

output products of the pipeline, each worker apparently is able to 

achieve transfer rates of upwards of 6-8 MB/s, greater than when 



the workers share a single EBS volume over NFS. Note that S3's 

latency may mean that new data products sent to S3 may not be 

accessible by another node in the cluster or cloud immediately, 

but this is not a major concern. Whether or not the files were sent 

to S3 one at a time, or as a block, made no significant difference. 

 

Figure 8 Experiment S3-A Worker 

Experiment S3-B merely aggregated the staging of raw inputs to 

the front of the experiment and much the same behavior was 

observed as in S3-A on the worker nodes. The EBS volume was 

still accessed by workers in order to obtain scripts and binary 

executables needed to perform processing operations, however. 

But, the data transfer rates to support this across NFS (when no 

other appreciable traffic is present) results in no noticeable 

anomalous slow start-ups for interpreted scripts. 

In the 80-core experiments, the S3 variants clearly outstrip the 

EBS variants in terms of performance. Where a run of processing 

took around 7 hours for the EBS variants, only 3 hours were used 

in the S3 experiments. The amount of time spent by workers 

loading output data into S3 was an order of magnitude smaller 

than into EBS. Possible EBS-based solutions that could improve 

EBS performance include --- splitting the data across multiple 

EBS volumes, or creating a RAID 0 array from multiple EBS 

volumes. However, these improvements, unless overwhelmingly 

cost-effective, would not be of interest to SNfactory due to 

increased complexity. 

4.2.4 Scaling 
Figure 9 compares mean wallclock times for each of the three 

main phases of each processing experiment. For comparison, the 

40-core (21 nodes: 20 worker nodes and 1 NFS/head node) 

variants are included along side the 80-core (41 nodes: 40 worker 

nodes and 1 NFS/head node) results. The "fetch" phase is 

measured only for the "B" experiments that have a separate initial 

staging phase. In the other experiments, the file transfer from NFS 

to workers is combined with the processing (or "IFU" phase). The 

"put" phase is measured when outputs are sent to long-term 

storage from workers after processing is done. The wallclock time 

measurements are a mean over all workers in the cluster, and the 

distribution is dominated by the spread over the size of each input 

task, not conditions in EC2. 

The scaling results in this Figure are interesting. The S3 

experiments scaling performance from 40 to 80-cores, which are 

reasonable sizes of interest to the SNfactory, is excellent. 

Comparing the EBS-results, going from the "A" mode of putting 

outputs on the EBS volume after all processing to the "B" mode 

of interleaving transfer back resulted in a decrease of total time to 

complete the experiment, but this clearly did not translate from 40 

cores to 80, where basically no change is observed. 

 

Figure 9 Scaling Performance 

4.2.5 Cost 
Figure 10 shows the cost associated with analyzing one night of 

data with both 40 and 80 cores. Each bar represents the total 

costs. The data costs and compute costs are show in different 

shades for each bar. We can clearly see that although S3 offers 

significantly better performance, that performance comes at a cost. 

Data storage in S3 is more expensive then storing data in an EBS 

volume.  

 

Figure 10 Cost of Analyzing One Night of Data 

Figure 11 shows the cost of running a single experiment and 

storing the data of that single experiment for one month. Data 

transfers between EC2 and S3 are free. Because of the cost 

numbers, it is clear that we should only use S3 storage for those 

places where it impacts performance. Otherwise we are better off 

using EBS for our storage. In the case of the SNfactory, this 



means that we will store our input data, and our application data 

in EBS. Our output data will be written to S3. 

 

Figure 11 Cost per Experiment 

5. RELATED WORK 
Various application groups have run scientific computations and 

pipelines on Amazon EC2 to study the feasibility of the model for 

a particular application. In addition previous work has evaluated 

performance of difference Amazon components e.g., the storage 

service (S3) [16]. 

Deelman et al. detail the computational and storage costs of 

running the Montage workflow on Amazon EC2 resources [12]. 

High-Energy and Nuclear Physics (HEPN) „s STAR experiments 

have been run on cloud environments such as Amazon EC2 [14, 

15] and identified certain challenges associated with image 

management, deployment context and the management of virtual 

clusters. Standard benchmarks have been evaluated in the 

Amazon EC2 environment that experience communication 

bottlenecks but small-scale codes [13]. 

Our work details both the development as well as the performance 

impact of various design solutions when running the SNfactory 

Experiment on Amazon EC2. 

6. CONCLUSION 
While the Amazon Web Services environment can be very useful 

for scientific computing, porting your scientific application into 

this framework today requires significant effort. Most scientific 

applications expect a certain environment to be present. Either 

that environment, e.g., an HPC cluster environment, is replicated 

in EC2, or the application must be changed to remove those 

expectations. 

One expectation that most scientific applications that run in 

traditional cluster environments have is that the mean rate of 

failure is very low. Traditionally this has been true; hence most 

scientific applications do not handle failure well. Our experience 

with the Amazon Web Services environment is that failures occur 

frequently, and the application must be able to handle them 

gracefully and continue operation. 

The most common failure is an inability to acquire all of the 

virtual machine images you requested because insufficient 

resources are available. When attempting to allocate 80 cores at 

once, this happens fairly frequently. Your application needs to be 

able to adapt to the actual number of virtual machines available, 

and not expect that it will always acquire all of the requested 

resources. 

In addition to not being able to acquire all of the requested 

resources, we saw a wide variety of transient errors. These 

included an inability to access the “user-data” passed in during 

image startup, failure to properly configure the network, failure to 

boot properly, and other performance perturbations. While none 

of these errors occurred frequently, they do in aggregate happen 

often enough that it is essential that your application can deal 

gracefully with them. 

In addition to managing errors, and essential component of 

porting a scientific application into the Amazon Web Services 

environment is benchmarking. Understanding how to utilize the 

various storage components available in the environment today to 

maximize performance for a given cost requires a significant 

effort in benchmarking your application. 

From our experiments, we conclude that at least for the 

SNfactory, an optimal configuration of Amazon Web Services 

resources consists of storing raw input files on an EBS volume, 

and sending the outputs to Amazon S3, capitalizing on S3's 

superior scaling properties. Application code can reside on an 

EBS volume shared out over NFS. 
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