
Seeking Supernovae in the Clouds: A Performance Study

Keith R. Jackson
Lavanya Ramakrishnan

Computational Research Division

Lawrence Berkeley National Lab
1 Cyclotron Road

Berkeley, CA 94720

KRJackson@lbl.gov

LRamakrishnan@lbl.gov

Karl J. Runge
Physics Division

Lawrence Berkeley National Lab
1 Cyclotron Road

Berkeley, CA 94720
(510) 486-4384

KJRunge@lbl.gov

Rollin C. Thomas
Computational Cosmology Center

Lawrence Berkeley National Lab
1 Cyclotron Road

Berkeley, CA 94720
(510) 486-4697

RCThomas@lbl.gov

ABSTRACT

Today, our picture of the Universe radically differs from that of

just over a decade ago. We now know that the Universe is not

only expanding as Hubble discovered in 1929, but that the rate of

expansion is accelerating, propelled by mysterious new physics

dubbed "Dark Energy." This revolutionary discovery was made by

comparing the brightness of nearby Type Ia supernovae (which

exploded in the past billion years) to that of much more distant

ones (from up to seven billion years ago). The reliability of this

comparison hinges upon a very detailed understanding of the

physics of the nearby events. As part of its effort to further this

understanding, the Nearby Supernova Factory (SNfactory) relies

upon a complex pipeline of serial processes that execute various

image processing algorithms in parallel on ~10TBs of data.

This pipeline has traditionally been run on a local cluster. Cloud

computing offers many features that make it an attractive

alternative. The ability to completely control the software

environment in a Cloud is appealing when dealing with a

community developed science pipeline with many unique library

and platform requirements. In this context we study the feasibility

of porting the SNfactory pipeline to the Amazon Web Services

environment. Specifically we: describe the tool set we developed

to manage a virtual cluster on Amazon EC2, explore the various

design options available for application data placement, and offer

detailed performance results and lessons learned from each of the

above design options.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent programming –

Distributed programming.

General Terms

Performance, Design.

Keywords

Cloud Computing, Distributed Systems, High Performance

Computing, eScience.

1. INTRODUCTION
The goal of the Nearby Supernova Factory (SNfactory)

experiment is to measure the expansion history of the Universe to

explore the nature of Dark Energy with Type Ia supernovae, and

also to improve our understanding of the physics of these events

to improve their utility as cosmological distance indicators.

Operating the largest data-volume supernova survey from 2004 to

2008, SNfactory made and continues to make heavy use of high

performance computing. SNfactory maintains and operates a

complex software pipeline using a local PBS cluster. However, as

the volume of data increases, more resources are required to

manage the search space for their application.

Cloud computing [20] is an attractive alternative for this

community of users for a variety of reasons. The pipeline consists

of code packages developed by members of the community that

have unique library and platform dependencies (e.g. preference of

32 bit over 64 bit to support legacy code). This often makes it

difficult to run in shared resource environments like

supercomputing centers where the software stack is pre-

determined. In addition, the extraction algorithms that are a major

component of the pipeline are constantly evolving and users need

the ability to use a fixed environment and make minor changes

before running a new experiment. Thus, providing access to a

shared environment to collaborators is critical to the user

community.

Cloud computing provides the ability to control software

environments, allows users to control access to collaborators that

need to access a particular setup and enables users to share

environments through virtual machine images. These features

address some of the challenges faced by the science users today.

The requirements for the SNfactory community are not unique

and represent the needs of a number of scientific user

communities. Earlier studies have evaluated performance

implications for applications on cloud environments and

experimented with specific choices of deployment [12-16].

However, significant effort is required today for scientific users to

use these environments and it is largely unclear how applications

can benefit from the plethora of choices available in terms of

instance types and storage options.

In the context of the SNfactory we study the feasibility of Amazon

Web Services (AWS) [4] as a platform for a class of scientific

applications and detail the impact of various design choices.

Specifically, (a) we describe the tool set we developed to manage

a virtual cluster on Amazon EC2, (b) we explore the various

design options available for application data storage, (c) we offer

detailed performance results and lessons learned from each of the

above design options.

2. BACKGROUND
Cosmology is the science of mapping out the history of the

Universe back to the instant of its creation in the Big Bang. A

complete history of the Universe spells out the origin of matter,

formation of galaxies and clusters of galaxies, and the dynamics

of space-time itself. Cosmology sets the stage for the story that

explains our species' place in the Universe.

Today, our picture of the Universe radically differs from that of

just over a decade ago. We now know that the Universe is not

only expanding as Hubble discovered in 1929, but that the rate of

expansion is accelerating. This revolutionary discovery was made

by comparing the brightness of nearby Type Ia supernovae (which

exploded in the past billion years) to that of much more distant

ones (from up to seven billion years ago). The more distant

supernovae appeared dimmer than expected, and repeated

experiments since the initial discovery have confirmed that the

excess dimming is due to acceleration, propelled by new physics

dubbed "Dark Energy" [17,18].

Type Ia supernovae are exploding stars --- as bright as an entire

galaxy of normal stars --- whose relative brightness can be

determined to 6% accuracy. They arise from a white dwarf star

that accretes gas from a companion star and explodes at a critical

mass equal to 1.4 times that of our Sun. This standard amount of

fuel makes for a "standard bomb," hence Type Ia supernovae

make excellent distance indicators due to the relatively small

dispersion in brightness. Understanding the origin of these

supernovae, how they explode, and how to better calibrate them

as distance indicators is the goal of the US/France Nearby

Supernova Factory experiment [9].

The SNfactory operated the largest data-volume supernova survey

active during 2004-2008, using the QUEST-II camera on the

Palomar Oschin 1.2-m telescope managed by the Palomar-

QUEST Consortium. Typically, over 50 GB of compressed image

data was obtained each night. This data would be transferred from

the mountain via radio internet link (on the High-Performance

Wireless Research and Education Network) to the San Diego

Supercomputing Center, and from there to the High Performance

Storage System (HPSS tape archive) at the National Energy

Research Scientific Computing Center (NERSC) in Oakland,

California. The next morning, the night's data were moved to the

Parallel Distributed Systems Facility (PDSF) cluster for

processing, reduction, and image subtraction. Software identified

candidates in subtractions using a variety of quality cuts and later,

machine learning algorithms to identify real astrophysical

transients and reject image/subtraction artifacts. Humans

performed the final quality assessment step, saving and vetting

candidates using historical and context data using a custom

scientific workflow tool, SNwarehouse [11]. The entire process,

from the start of data collection to human identification of

candidates, took approximately 18 hours.

Candidates in SNwarehouse were schedule for follow-up on the

SNfactory's custom-designed and custom-built SuperNova

Integral Field Spectrograph (SNIFS) installed permanently on the

University of Hawaii (UH) 2.2-m telescope atop Mauna Kea. The

SNIFS instrument and UH 2.2-m telescope are remotely

controlled over a Virtual Network Computing (VNC) interface,

typically from France where daytime corresponds to Hawaiian

nighttime. An agreement with the University of Hawaii ensured

that the SNfactory had 30% of the total observing time on the UH

2.2-m for its supernova follow-up program. The result is that the

SNfactory collaboration discovered, followed-up and is currently

analyzing a new set of Type Ia supernovae in greater numbers

and, through SNIFS, with greater precision than was ever possible

before. Over 3000 spectroscopic observations of nearly 200

individual supernovae are now ready for study. This data

represents a wholly new potential for understanding Type Ia

supernovae and using them to better measure the properties of

Dark Energy.

SNIFS was designed for the express purpose of obtaining precise

and accurate spectrophotometric time-series observations of

supernovae. This strategy is in marked contrast to other supernova

surveys which utilize spectroscopy primarily as a one-shot means

of classifying objects, and rely on multi-band photometric

imaging observations (a lower-dimensionality data set) as

principal science product. The challenge of precise

spectrophotometry dictated SNIFS design and the follow-up

strategy. For example, SNIFS basic design is that of an integral

field spectrograph, meaning that the entire field of view

containing a supernova is segmented into spatial chunks that are

each dispersed to produce a spectro-spatial data-cube. Most

supernova spectroscopy is performed with a slit spectrograph,

where care must be taken to avoid wavelength dependent slit-loss

of photons that the SNIFS design avoids completely by capturing

all the supernova light. Also, the decision to pursue guaranteed

telescope time and permanently mount SNIFS means that

SNfactory has unfettered access to it at almost any time for any

type of calibration experiment that can be conceived and executed

remotely. However, the custom design of the instrument means

that the extensive software code-base for reduction and analysis of

the data is designed and implemented by collaboration members

(scientists, postdocs, and students), from robotic

instrument/telescope control to data reduction and analysis.

Several candidate implementations for various steps in data

reduction may need extensive validation before one is selected

(alternatives developed may also be held in reserve for hot-

swapping). The general picture of the SNIFS data reduction

"pipeline" (referred to here as “IFU”) seems quite typical of many

other scientific collaborations which depend heavily on software,

computing, and data analysis with custom instrumentation: Codes

and scripts, running in a Linux/Unix batch-queue environment,

controlled by scripting (e.g. Python) wrappers that coordinate

work through a database or meta-data system.

SNIFS reduction tasks include standard CCD image preprocessing

(bias frame subtraction to remove electronics artifacts, flat-

fielding to map pixel-to-pixel response variations and bad pixels,

scattered-light background modeling and subtraction), wavelength

and instrument flexure corrections (solving for 2D instrument

distortions using arc-lamp exposures), mapping 2D CCD pixel

coordinates into 3D (wavelength, x, y) data cubes. Low-level

operations include digital filtering, Fourier transforms, full matrix

inversions, and nonlinear function optimization. These lower level

operations are mostly performed in a mixture of C, C++, Fortran

and Python. The current raw data set is approximately 10 TB, but

after processing this balloons to over 20 TB and is expected to

continue to grow. The pipeline is heavily dependent on external

packages such as CFITSIO [6], the GNU Scientific Library (GSL)

[7] and Python libraries like scipy and numpy (which in turn also

depend on BLAS [5], LAPACK [10], etc). The whole pipeline is

"process-level" parallel: Individual codes are not parallel so

parallelism is achieved by running large numbers of serial jobs to

perform the same task using different inputs. Since late 2007 the

SNIFS flux-calibration pipeline has been running on a large Linux

cluster at the IN2P3 Computing Center in Lyon, France --- a

facility shared with a number of other high-energy physics

experiments, most notably ones at the Large Hadron Collider

(LHC).

The SNfactory's dependence on large, shared Linux clusters at

NERSC and CCIN2P3 revealed a number of previously

unanticipated issues. In both cases, 24/7 support (especially

weekends) is unavailable except in cases of emergency --- and

what constitutes an emergency to a scientific experiment may not

register as such to cluster management personnel. This issue could

be ameliorated if each experiment simply managed its own mid-

sized or large cluster, but this would obviate the economy of scale

gained through a central computing resource. A compromise

would be to give users root or privileged access to the system, but

security problems obviously rule that out. Also, decisions made

by cluster management are necessarily driven by general policy

and cannot be easily tailored to fit every need of every

experiment. For example, at CCIN2P3, the entire operating

system and software architecture is rolled over roughly every 18

months --- this change is not transparent to users, and experiments

without a cadre of software experts must draft their scientists into

debugging and rewriting lines of code just to adjust to newly

added or changed dependencies. A cynical interpretation by

scientists of this practice might be "if it ain't broke, break it," but

these users generally recognize the benefit of adapting to new

systems and architectures, but want to make those changes when

they can afford to and can profit. From a financial standpoint,

using scientists to debug code is a suboptimal allocation of limited

funds.

Because of these issues and others, the SNfactory seized the

opportunity to experiment with cloud computing and

virtualization in general, with the Amazon Elastic Compute Cloud

(EC2) [2]. Key aspects that were initially attractive to SNfactory

include:

 Ability to select any flavor of Linux operating system.

 Options for architecture: 32-bit operating systems for

legacy code.

 Capability to install familiar versions of Linux binary

packages.

 Capacity to conveniently install third-party packages

from source.

 Access as super-user and shared access to a "group"

account.

 Immunity to externally enforced OS or architecture

changes.

 Immediate storage resource acquisition through EBS

and S3.

 Economy of scale and reliability driven by market

demands.

3. DESIGN
Porting a scientific application like the SNfactory pipeline to the

Amazon EC2 framework requires the development of some

infrastructure and significant planning and testing. The pipeline

was designed to operate in a traditional HPC cluster environment,

hence first we we began ported the environment into EC2. Once

that was completed, we began to decide where to locate our data,

what size compute resources to use, and then conducted tests to

validate our decisions.

3.1 Virtual Cluster Setup
The SNfactory code was developed to run on traditional HPC

clusters. It assumes that a shared file system exists between the

nodes, and that there is a head node that controls the distribution

of work units. However, the Amazon EC2 environment only

supports the creation of independent virtual machine instances

that boots appropriate instances. To make it easier to port the

SNfactory pipeline, we developed the ability to create virtual

clusters in the EC2 environment. A virtual cluster connects a

series of virtual machines together with a head node that is aware

of all of the worker nodes, and a shared file system between the

nodes.

To provide a persistent shared file system, we created an Amazon

Elastic Block Storage (EBS) volume [1]. EBS provides a block

level storage volume to EC2 instances that persists independently

from the instance lifetimes. On top of the EBS volume we built a

standard Linux ext3 file system. We were then able to have our

head node export this file system via NFS to all of the virtual

cluster nodes.

To setup a virtual cluster we tried two different techniques. The

first technique we tried involved customizing the virtual machine

images for each role. A custom image would be made that knew

how to attach the EBS volume, start all of the worker nodes, and

then export the EBS volume over NFS. While this approach had

the advantage of simplicity for the end user, it quickly became

apparent that it introduced a large burden on changing the

environment. Any time a change was made, a new machine image

had to be saved, and all of the other infrastructure updated to use

this new image.

Instead of this approach, we decided to use a series of bash scripts

that utilize the Amazon EC command-line tools. All of the state is

now kept in these scripts, and standard machine images can be

used. During the setup of a virtual cluster, we first instantiate an

instance that will become the head node of the virtual cluster, to

this node we then attach the EBS volume. Once this is complete,

we instantiate each of the worker nodes. For each work node, we

write its private IP address into the head nodes /etc/exports file.

This file controls the addresses the NFS server will export to. The

private IP addresses are also written out into a MPI machine file.

The head node uses this file to decide where to send work units.

After these files are written, the NFS server is started on the head

node and the proper mount commands are executed on the worker

nodes. At this point in time our virtual cluster setup is completed

and we are ready to begin running the SNfactory jobs.

3.2 Data Placement
Once we had developed the mechanisms to create virtual clusters,

we were faced with deciding where to store our input data, code,

and output data. In a traditional cluster environment all data

would be stored on the shared file system. In the Amazon Web

Services environment we have two main choices for data storage.

We can store data on the EBS volume that is shared between the

nodes, or we can store our data in the Simple Storage Service (S3)

[3]. S3 provides a simple web services interface to store and

retrieve data from anywhere. To decide which of these options

would provide the best performance at the cheapest cost, we ran a

series of experiments that are described below.

4. EVALUATION
The goal of our evaluation was to evaluate the various choices

available to the end user through Amazon EC2 and study the

impact on performance and corresponding cost considerations.

4.1 Experimental Setup
We undertook a series of experiments focused on I/O and CPU

data-processing throughput to observe and characterize

performance, explore scalability, and discover optimal

configuration strategies for the SNfactory using a virtual cluster in

the Amazon Elastic Compute Cloud. We were particularly

interested in studying the EBS versus S3 storage trade-offs, and

the effects of various I/O patterns on aggregate performance for

realistic "runs" of spectrograph data processing. In addition, we

concentrated on approaches that required only minimal coupling

between the existing SNfactory IFU pipeline and EC2 resources;

for example, invasive changes that would enable the pipeline to

access S3 were ruled out but transparent NFS file access was not.

Experiments were organized in a matrix by long-term storage

option employed (EBS or S3) and whether or not I/O with long-

term storage was concurrent with data processing or segregated

into phases that precede or follow it. Each experiment was first

conducted using a cluster of 40 worker cores and repeated with 80

worker cores. In each cluster, an additional node was allocated

which attaches an EBS volume and serves it out to the workers via

NFS. This configuration was used even when processing inputs

and/or outputs involved S3 --- the NFS server was used to

distribute the SNfactory pipeline's compiled binary executables

and scripts to workers. We also address the implications of this

strategy in our analysis.

EC2 32-bit high-CPU medium instances (c1.medium: 2 virtual

cores, 2.5 EC2 Compute Units each) were used in all experiments

discussed. Test runs with small instances (m1.small: 1 virtual core

with 1 EC2 Compute Unit) demonstrated that a cluster consisting

of those instances is actually less cost-effective by a factor of two

since the cost per core is the same but the wall-clock time

required for processing is twice as long: 30% of physical CPU

resources are available to a single m1.small instance where nearly

95% are available to a single c1.medium instance. The relative

cost ratio per core of 1:1 also holds in the Amazon EC2 spot-price

market given the observed average spot-prices to date. However,

it should be noted that this ratio is an ideal in the spot-market,

where users declare a price above spot they are willing to pay.

For profiling our cluster, we found the sysstat project's sar

command [8] to be a very useful way to collect information on

system performance with very low overhead (sampling every 15

seconds results in a load of essentially 0.00 on an idle machine).

The low overhead was not surprising as sar reads kernel data

structure values (i.e. counters) via the /proc file-system. There are

about 200 quantities sar samples in '-A' mode, which we used

excluding collection of interrupt statistics on all 256 interrupts.

The sar utility was run on the NFS server and all worker nodes in

each experiment, and its output served as the primary source for

our measurements.

The raw spectrograph data set itself is organized (in general but

also in particular on EBS) in a nested directory tree by night of

observation --- all files obtained in a given 24-hour period are

contained in a single directory (an average of about 370 files per

directory). Data files themselves are mostly FITS [19] format, a

standard digital image format widely used in astronomy. The

input data used to perform our EC2 experiments consists of raw

spectrograph CCD images including science frames (supernovae

and spectroscopic standard stars) as well as associated instrument

calibration frames (internal arc and continuum lamp exposures for

flexure and response corrections). The average size of a typical

night's worth of spectrograph data is 2.7 GB. Other raw data files

from the spectrograph include metadata text files, and an entire

stream of FITS files from the photometric imaging channel, which

is currently handled using a separate pipeline. Nonetheless,

operations tested consist of most of the numerically intensive

portions of the SNfactory spectroscopic pipeline.

Table 1 Experimental Data Placement

Experiment Input Data Output Data

EBS-A1 EBS via NFS Local Storage to EBS

via NFS

EBS-B1 Staged to Local

Storage from EBS

Local Storage to EBS

via NFS

EBS-A2 EBS via NFS EBS via NFS

EBS-B2 Staged to Local

Storage from EBS

EBS via NFS

S3-A EBS via NFS Local Storage to S3

S3-B Staged to Local

Storage from S3

Local Storage to S3

4.2 Experiment Results
In our description of the experimental results, we focus on

detailed results from the 80-core runs, and rely on the smaller 40-

core runs to discuss scaling. The 80-core cluster is a reasonable

approximation of the size of cluster the SNfactory expressed

interest in using, as it puts within reach end-to-end processing of

their entire multi-year data set (over 500 nights) on the timescale

of a day or so. This ability is critical to the analysis, where

differences in how early processing steps propagate down to

changes in cosmological results.

Table 1 summarizes the options used for data placement in the

experiments discussed below.

4.2.1 Experiments EBS-A1 and EBS-B1
In experiment EBS-A1, the reduction pipeline running on each

worker instance reads raw input files as they were needed directly

from the EBS volume across NFS via the EC2 internal network.

As automated data reduction proceeded, data output products

(usually further FITS files) were deposited in worker local

ephemeral storage. When all of the processing was complete on a

worker, the output files were copied back to the EBS volume

served by the NFS server node. Figure 1 provides a detailed view

of the observed performance during EBS-A1.

Figure 1 Experiment EBS-A1 NFS Server

Figure 2 Experiment EBS-A1 Worker

Figure 1 displays the measured network send and receive rates,

disk read and write rates, and system load for the NFS server

node. The red dashed lines in the top two panels trace the rates of

transfer of input data to the worker nodes from the EBS volume.

The periodic, decaying spikes of activity are a natural side-effect

of the homogeneity of the input data: each set of files is the same

size and the amount of time to process each is highly correlated.

Perturbations in run-times cause the peaks to decay and disk

access to spread out. File caching accounts for the difference

between the network send and disk read curves, induced by

duplication of nights across some worker cores (duplication is not

used to observe caching in all experiments). During the first 3

hours of the experiment, CPU load on the NFS server (bottom

panel) is negligible, but as workers complete tasks and begin

sending data back, the network receive and disk write (black solid

lines), and system load climb rapidly. Data rates of over 40 MB/s

are achieved, and the NFS server load climbs to around 10. This

phase lasts for over 4 hours, longer than it took to process the

data. The broad spike of data transfer to the NFS node just before

2h into the experiment is the result of a "short" night of data --- a

worker core completed processing and was able to send its results

back to the EBS volume before the rest of the nights were

completed.

In Figure 2, we show the profile of disk and network activity for a

typical worker node in the cluster. Disk writes on the worker (raw

files from the NFS server) occur at punctuated intervals as the

pipeline completes individual tasks on each set of inputs and gets

the next set. During the phase where outputs are sent back to the

NFS server, we see that the worker is competing with other

workers in the cluster for access, as 40 MB/s of bandwidth must

be shared across 80 cores.

Figure 3 Experiment EBS-B1 NFS Server

Figure 4 Experiment EBS-B1 Worker

Experiment EBS-B1 repeated Experiment EBS-A1, except that

raw input files were staged to worker ephemeral storage before

processing began. In Figure 3, we see that the NFS server

achieves a very high rate of transfer to the workers --- around 60

MB/s reading from the EBS volume, and 80 MB/s sending the

data out to workers (again caching explains the difference). The

long transfer phase back to EBS is again observed, as expected.

Note in Figure 4, one of the two cores of the worker node was

responsible for a short night --- it was able to send its results back

to the NFS server using all the bandwidth that is later shared by

all 80 cores in the cluster, so here it enjoys superior network send

and disk-read rates. The other night on the same node took longer

to complete, and its output transfer lasted over an hour instead of

a few minutes.

4.2.2 Experiments EBS-A2 and EBS-B2
For Experiment EBS-A2, the pipeline on each worker instance

reads input files directly from EBS via NFS as in Experiment

EBS-A1, but instead of caching the results and saving them to the

EBS volume at the end of processing, they are saved back as they

are produced. The point of the experiment is to determine whether

interleaving the I/O with the data processing spreads out the I/O

access patterns naturally to distribute bandwidth amongst worker

cores.

Figure 5 Experiment EBS-A2 NFS Server

Figures 5 and 6 show this is simply not the case --- in fact, a very

strong oscillatory pattern in the data transfer rates and system load

on the NFS server. We suspected that the stream of EBS writes to

the NFS server was reducing the ability of workers to read the

next set of inputs, driving a synchronization where tasks could not

begin until all data had been sent to the EBS volume.

Investigating the situation on the workers revealed something

similar to this hypothesis but not exactly the same.

Some SNfactory pipeline components appeared to be taking a

very long time to complete appointed tasks, but did not seem to be

utilizing the CPU heavily. Using the strace command, we found

that in at least one case, the scripts were taking a very long time to

simply load from the NFS server. In particular, a scattered-light

correction script written in Python was observed to take 12

minutes simply to load as numerous modules in the form of

shared objects, pure python, or compiled python were checked.

Compiled binaries (say, written in C or C++) generally lauched

much faster than the interpreted scripts (which drove the

synchronization).

Experiment EBS-B2 is a variation of EBS-A2, with raw input data

being staged to worker local ephemeral storage before processing

is launched. The same oscillatory pattern is observed as in EBS-

A2, and the NFS server network send and disk read rates were

comparable to those observed in experiment EBS-B1.

It is interesting to note that the 40-core runs did not exhibit the

clear oscillatory behavior observed in the 80 core runs. This is

true for both cases EBS-A2 and EBS-B2. Evidently the 40-core

runs were below a threshold where the start-up times for

interpreted scripts became noticeably enlarged.

Figure 6 Experiment EBS-A2 Worker

4.2.3 Experiments S3-A and S3-B
With the EBS-based experiments taking upwards of 7 hours to

complete, with at least as much time spent on file system access as

was spent on CPU usage, we investigated using Amazon S3 as the

persistent storage mechanism for pipeline inputs and outputs. In

Experiment S3-A, raw input data was read from the EBS volume

but the outputs cached to S3 after processing was done.

Experiment S3-B relied upon S3 both to provide raw inputs

staged to worker local ephemeral storage, and for long-term

storage of outputs.

Figure 7 Experiment S3-A NFS Server

In Experiment S3-A, we again see the decaying network send and

disk read rates on the NFS server in Figure 7. As no outputs are

being sent back to the EBS volume there is no measured net

receive or disk write rate. On the worker, as depicted in Figure 8,

processing for one of the two nights completes about a half hour

before the other and its transfer to S3 begins (and the load drops

by 1). All data products are sent to S3, as observed by sar within

much less than an hour. By using S3 as the destination of the

output products of the pipeline, each worker apparently is able to

achieve transfer rates of upwards of 6-8 MB/s, greater than when

the workers share a single EBS volume over NFS. Note that S3's

latency may mean that new data products sent to S3 may not be

accessible by another node in the cluster or cloud immediately,

but this is not a major concern. Whether or not the files were sent

to S3 one at a time, or as a block, made no significant difference.

Figure 8 Experiment S3-A Worker

Experiment S3-B merely aggregated the staging of raw inputs to

the front of the experiment and much the same behavior was

observed as in S3-A on the worker nodes. The EBS volume was

still accessed by workers in order to obtain scripts and binary

executables needed to perform processing operations, however.

But, the data transfer rates to support this across NFS (when no

other appreciable traffic is present) results in no noticeable

anomalous slow start-ups for interpreted scripts.

In the 80-core experiments, the S3 variants clearly outstrip the

EBS variants in terms of performance. Where a run of processing

took around 7 hours for the EBS variants, only 3 hours were used

in the S3 experiments. The amount of time spent by workers

loading output data into S3 was an order of magnitude smaller

than into EBS. Possible EBS-based solutions that could improve

EBS performance include --- splitting the data across multiple

EBS volumes, or creating a RAID 0 array from multiple EBS

volumes. However, these improvements, unless overwhelmingly

cost-effective, would not be of interest to SNfactory due to

increased complexity.

4.2.4 Scaling
Figure 9 compares mean wallclock times for each of the three

main phases of each processing experiment. For comparison, the

40-core (21 nodes: 20 worker nodes and 1 NFS/head node)

variants are included along side the 80-core (41 nodes: 40 worker

nodes and 1 NFS/head node) results. The "fetch" phase is

measured only for the "B" experiments that have a separate initial

staging phase. In the other experiments, the file transfer from NFS

to workers is combined with the processing (or "IFU" phase). The

"put" phase is measured when outputs are sent to long-term

storage from workers after processing is done. The wallclock time

measurements are a mean over all workers in the cluster, and the

distribution is dominated by the spread over the size of each input

task, not conditions in EC2.

The scaling results in this Figure are interesting. The S3

experiments scaling performance from 40 to 80-cores, which are

reasonable sizes of interest to the SNfactory, is excellent.

Comparing the EBS-results, going from the "A" mode of putting

outputs on the EBS volume after all processing to the "B" mode

of interleaving transfer back resulted in a decrease of total time to

complete the experiment, but this clearly did not translate from 40

cores to 80, where basically no change is observed.

Figure 9 Scaling Performance

4.2.5 Cost
Figure 10 shows the cost associated with analyzing one night of

data with both 40 and 80 cores. Each bar represents the total

costs. The data costs and compute costs are show in different

shades for each bar. We can clearly see that although S3 offers

significantly better performance, that performance comes at a cost.

Data storage in S3 is more expensive then storing data in an EBS

volume.

Figure 10 Cost of Analyzing One Night of Data

Figure 11 shows the cost of running a single experiment and

storing the data of that single experiment for one month. Data

transfers between EC2 and S3 are free. Because of the cost

numbers, it is clear that we should only use S3 storage for those

places where it impacts performance. Otherwise we are better off

using EBS for our storage. In the case of the SNfactory, this

means that we will store our input data, and our application data

in EBS. Our output data will be written to S3.

Figure 11 Cost per Experiment

5. RELATED WORK
Various application groups have run scientific computations and

pipelines on Amazon EC2 to study the feasibility of the model for

a particular application. In addition previous work has evaluated

performance of difference Amazon components e.g., the storage

service (S3) [16].

Deelman et al. detail the computational and storage costs of

running the Montage workflow on Amazon EC2 resources [12].

High-Energy and Nuclear Physics (HEPN) „s STAR experiments

have been run on cloud environments such as Amazon EC2 [14,

15] and identified certain challenges associated with image

management, deployment context and the management of virtual

clusters. Standard benchmarks have been evaluated in the

Amazon EC2 environment that experience communication

bottlenecks but small-scale codes [13].

Our work details both the development as well as the performance

impact of various design solutions when running the SNfactory

Experiment on Amazon EC2.

6. CONCLUSION
While the Amazon Web Services environment can be very useful

for scientific computing, porting your scientific application into

this framework today requires significant effort. Most scientific

applications expect a certain environment to be present. Either

that environment, e.g., an HPC cluster environment, is replicated

in EC2, or the application must be changed to remove those

expectations.

One expectation that most scientific applications that run in

traditional cluster environments have is that the mean rate of

failure is very low. Traditionally this has been true; hence most

scientific applications do not handle failure well. Our experience

with the Amazon Web Services environment is that failures occur

frequently, and the application must be able to handle them

gracefully and continue operation.

The most common failure is an inability to acquire all of the

virtual machine images you requested because insufficient

resources are available. When attempting to allocate 80 cores at

once, this happens fairly frequently. Your application needs to be

able to adapt to the actual number of virtual machines available,

and not expect that it will always acquire all of the requested

resources.

In addition to not being able to acquire all of the requested

resources, we saw a wide variety of transient errors. These

included an inability to access the “user-data” passed in during

image startup, failure to properly configure the network, failure to

boot properly, and other performance perturbations. While none

of these errors occurred frequently, they do in aggregate happen

often enough that it is essential that your application can deal

gracefully with them.

In addition to managing errors, and essential component of

porting a scientific application into the Amazon Web Services

environment is benchmarking. Understanding how to utilize the

various storage components available in the environment today to

maximize performance for a given cost requires a significant

effort in benchmarking your application.

From our experiments, we conclude that at least for the

SNfactory, an optimal configuration of Amazon Web Services

resources consists of storing raw input files on an EBS volume,

and sending the outputs to Amazon S3, capitalizing on S3's

superior scaling properties. Application code can reside on an

EBS volume shared out over NFS.

7. ACKNOWLEDGMENTS
This work was funded in part by the Advanced Scientific

Computing Research (ASCR) in the DOE Office of Science under

contract number DE-C02-05CH11231. The authors would like to

thank Amazon for access to Amazon EC2. The authors would also

like to thank the Magellan team at NERSC for discussions on

cloud computing.

8. REFERENCES
[1] Amazon EBS. http://aws.amazon.com/ebs/

[2] Amazon EC2. http://aws.amazon.com/ec2/

[3] Amazon S3. http://aws.amazon.com/s3/

[4] Amazon Web Services. http://aws.amazon.com/

[5] BLAS. http://www.netlib.org/blas/

[6] CFITSIO.

http://heasarc.nasa.gov/docs/software/fitsio/fitsio.html

[7] GSL. http://www.gnu.org/software/gsl/

[8] Sar. http://pagesperso-orange.fr/sebastien.godard/

[9] Aldering, G. et al., Overview of the Nearby Supernova

Factory. City, 2002.

[10] Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A.,

McKenney, A., Du Croz, J., Hammerling, S., Demmel, J.,

Bischof, C. and Sorensen, D. LAPACK: A portable linear algebra

library for high-performance computers. IEEE Computer Society

Press, City, 1990.

[11] Aragon, C. R., Poon, S. S., Aldering, G. S., Thomas, R. C.

and Quimby, R. Using visual analytics to develop situation

awareness in astrophysics. Information Visualization, 8, 1 2009),

30-41.

[12] Deelman, E., Singh, G., Livny, M., Berriman, B. and Good,

J. The Cost of Doing Science on the Cloud: The Montage

Example. City, 2008.

[13] Evangelinos, C. and Hill, C. N. Cloud computing for

Parallel Scientific HPC Applications: Feasibility of Running

http://aws.amazon.com/ebs/
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://aws.amazon.com/
http://www.netlib.org/blas/
http://heasarc.nasa.gov/docs/software/fitsio/fitsio.html
http://www.gnu.org/software/gsl/
http://pagesperso-orange.fr/sebastien.godard/

Coupled Atmosphere-Ocean Climate Models on Amazon’s EC2.

City, 2008.

[14] Keahey, K. and Freeman, T. Science Clouds: Early

Experiences in Cloud Computing for Scientific Applications. City,

2008.

[15] Keahey, K., Freeman, T., Lauret, J. and Olson, D. Virtual

Workspaces for Scientific Applications. Physics: Conference

Series, 78, 012038 (2007 2007), 5.

[16] Palankar, M. R., Iamnitchi, A., Ripeanu, M. and Garfinkel, S.

Amazon S3 for science grids: a viable solution? , City, 2008.

[17] Perlmutter, S., et al. Measurements of Omega and Lambda

from 42 High-Redshift Supernovae. Astrophys. J., 517, (1999),

565-586.

[18] Riess, A., et al., Observational Evidence from Supernovae

for an Accelerating Universe and a Cosmological Constant,

Astron. J., 116, (1998), 1009-1038.

[19] Wells, D. C., Greisen, E. and Harten, R. H. FITS: A Flexible

Image Transport System. Astron. Astrophys. Suppl., 44, (1981),

363-370.

[20] Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R.,

Konwinski, A., Lee, G., Patterson, D., Rabkin, A. and Stoica, I.

Above the clouds: A berkeley view of cloud computing. EECS

Department, University of California, Berkeley, Tech. Rep.

UCB/EECS-2009-282009).

