
Exploring Application and Infrastructure Adaptation on Hybrid Grid-Cloud
Infrastructure

Hyunjoo Kim1, Yaakoub el-Khamra34, Shantenu Jha2, Manish Parashar1
1 NSF Center for Autonomic Computing, Dept. of Electrical & Computer Engr., Rutgers University, , NJ, USA

2Center for Computation & Tech. and Dept. of Computer Science, Louisiana State University, USA
3Texas Advanced Computing Center, The University of Texas at Austin, Austin Texas, USA

4Craft and Hawkins Dept. of Petroleum Engineering, Louisiana State University, USA

Abstract
Clouds are emerging as an important class of distributed

computational resources and are quickly becoming an
integral part of production computational infrastructures.
An important but oft-neglected question is, what new
applications and application capabilities can be supported
by clouds as part of a hybrid computational platform?
In this paper we use the ensemble Kalman-filter based
dynamic application workflow and investigate how
clouds can be effectively used as an accelerator to
address changing computational requirements as well as
changing Quality of Service constraints (e.g., deadlines).
Furthermore, we explore how application and system-level
adaptivity can be used to improve application performance
and achieve a more effective utilization of the hybrid
platform. Specifically, we adapt the ensemble Kalman-filter
based application formulation (serial versus parallel,
different solvers etc.) so as to execute efficiently on a
range of different infrastructure (from High Performance
Computing grids to clouds that support single core and
many-core virtual machines). Our results show that there
are performance advantages to be had by supporting
application and infrastructure level adaptivity. In general,
we find that grid-cloud infrastructure can support novel
usage modes, such as deadline-driven scheduling, for
applications with tunable characteristics that can adapt to
varying resource types.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Distributed Programming, Parallel
Programming
General Terms Algorithms, Management, Performance,
Experimentation
Keywords Cloud Computing, Hybrid Computing

I. Introduction and Motivation
Clouds are emerging as an important class of distributed

computational resources – both, for data-intensive and
compute-intensive applications. In fact, they are rapidly
joining high-performance grids as viable computational

platforms for scientific exploration and discovery, and it
is clear that future production computational infrastructures
will integrate both paradigms. It is thus critical to under-
stand what role clouds will play in the formulation and ex-
ecution of computational applications and what abstractions
and tools are necessary to support their usage.

Clouds support a different although complementary us-
age model to more traditional High Performance Computing
(HPC) grids. Cloud usage models are based upon on-
demand access to computing utilities, an abstraction of un-
limited computing resources, and a usage-based “payment
model” whereby users essentially “rent” virtual resources
and “pay” for what they use. Several recent efforts [1],
[2], [3] have clearly demonstrated that clouds can be ef-
fectively used as alternate platforms for certain classes of
applications. These include applications with very modest
communication and synchronization requirements such as
parameter sweeps and data analytics. Many applications
that currently use clouds are legacy or cross-over applica-
tions from the cluster/HPC world. For example, there are
many traditional HPC applications that use clouds such as
Cyclone [4] – SGI’s latest cloud offering. Furthermore, it
has also been established that there are application profiles
that are better suited to HPC grids (e.g., large scale DNS
and Quadratic Mean calculations), and others that are more
appropriate for clouds.

Whereas it is important to explore and support the
migration of traditional applications to cloud computational
platforms, it is also imperative to ask: What new appli-
cations and application capabilities can be supported by
clouds – either as stand-alone infrastructure, or as part
of a hybrid grid-cloud computational platform? Can the
addition of clouds enable scientific applications and usage
modes, that are not possible otherwise? What abstractions
and systems are essential to support these advanced appli-
cations on different hybrid grid-cloud platforms (e.g., High-
Performance Computing (HPC) and/or High Throughput
Computing (HTC) grid-clouds). These questions and related
issues frame the scope of this paper.

We address these issues in the context of dynamic appli-
cations, defined as applications whose execution trajectory
or resource requirements cannot be completely determined
a priori. This can be due to a change in computational re-
quirement or a change in execution trajectory. Furthermore,
an application is referred to as dynamic only if it is able to
respond to changes. Ideally, dynamic applications are able to
adapt at the application level, as well as at the infrastructure
utilization level. Thanks to the ability to provide an illusion
of unlimited and/or immediately available resources, as
currently provisioned, clouds have the interesting and useful
ability to support applications with changing requirements.
Furthermore, dynamic applications due to their ability to
adapt to changes in infrastructure can effectively utilize
clouds resources when necessary.

We established in Ref. [5] that clouds in conjunction
with traditional HPC and HTC grids provide a balanced
infrastructure supporting scale-out and scale-up/down for a
range of application (model) sizes and requirements. We
also demonstrated that such hybrid infrastructure support a
range of objectives, for example, reduced times-to-solutions,
reduced costs (in terms of currency or resource usage),
or resilience against unexpected outages (e.g., unexpected
delays in scheduling queues or unexpected failures). In
this paper, we investigate how clouds can be effectively
used as accelerators to address changing computational
requirements as well as changing Quality of Service (QoS)
constraints (e.g., deadline) for a dynamic application work-
flow. Furthermore, we explore how application and system-
level adaptivity can be used to achieve improved overall
application performance and more effective utilization of
the hybrid platform.

Two high-level goals guide the design of the experiments
presented in this paper. One goal of this paper is to estab-
lish the benefits from a hybrid HPC grid-cloud execution
environment for a sophisticated scientific application. This
extends the work in Ref. [5], where we now have a much
richer space of infrastructure and application variability
– including more virtual machine types, sequential and
parallel implementations of the scientific applications. We
investigate how acceleration – defined as a reduced TTC,
can be achieved by exploring & exploiting a richer set of
infrastructure, but we also investigate these objectives in the
context of a richer application space, i.e., different solvers,
pre-conditioners etc., predict and model parallel tasks and
their usage of hybrid HPC grids and cloud infrastructure.

In the second goal, we want to investigate application-
infrastructure adaptivity, how it can be supported on hybrid-
infrastructure, and the subsequent performance advantages.
Specifically, we want to validate the conceptual architec-
ture and framework for supporting adaptivity as defined
in Ref [6]. To this end, three approaches to supporting
adaptivity in computational science applications are inves-
tigated: (i) Track 1 – referred to as infrastructure-level

adaptivity is characterized by the selection of infrastruc-
ture as a degree-of-freedom; (ii) Track 2 – referred to
as application-level adaptivity, and which is characterized
by the tuning of applications in various ways, and (iii)
Track 3 – adaptivity of both infrastructure and application.
For example, track 1 involves provisioning of immediately
available resources; technically, track 2 is about changing
the numerical solvers & preconditioners, and the number of
ensemble members, size of ensembles and possibly also the
frequency of assimilation. A necessary condition is that the
application formulation should be amenable to and support
runtime adaptivity. Track 3 considers both infrastructure
adaptivity and application tuning at the same time. We aim
to understand the relative merits and performance trade-offs
of the three tracks.

Our adaptive workflow is an ensemble Kalman-filter
(EnKF) that uses a reservoir simulator [7] to forecast
an ensemble of models and a repeating analysis step to
match model production with historical production (his-
tory matching). We investigate the application along the
three tracks described above. Experimental results show
that adaptivity can reduce total time-to-completion (TTC)
with a reasonable cost. Experiments also establish that
application-level adaptivity can affect TTC.

The rest of this paper is organized as follows. Section II
discusses related works and provides some background
information. Section III describes reservoir characterization
and the EnKF applications workflow, introduces Comet-
Cloud, and then describes dynamic execution and adaptivity
of EnKF using CometCloud. In Section IV we describe
the experimental environments and present our results.
Section VI concludes this paper.

II. Related and Prior Work

A. Related Work
In Ref. [8], Buyya et.al. describe an approach of ex-

tending a local cluster to cloud resources using schedulers
applying different strategies. Their approach was simulated-
based, and not executed on production runs on cloud
resources. References [2] and [9], investigate the elas-
tic growth of grids to clouds. Vazquez et.al. [9] use the
GridWay metascheduler to elastically grow the grid infras-
tructure to Nimbus [10] based cloud. Their experimented
used the NAS Grid Benchmark suite. Ostermann et.al. [2]
extended a workflow application developed for a grid com-
puting environment to include cloud resources; they used
the Austrian Grid and an Eucalyptus-based academic cloud
installation.

Our previous work considered a hybrid computing envi-
ronment which integrated clusters with clouds [11], grids
with clouds [5] and enabled autonomic cloudbursts on
demand. CometCloud is very flexible and able to integrate
multiple resource types, while other approaches are closely

based on one resource class, for example, they use some
specific grid based job scheduler, resource management, etc.
CometCloud uses an overlay mechanism, therefore any kind
of node can join CometCloud and provide computing or/and
storage capability.

Several economic models for resource scheduling on
grids have been proposed, however, there exist limited effort
on resource scheduling on hybrid computing environments.
Recently a combinatorial auction model [12] was proposed
for both grids and clouds and a cost model based on eco-
nomic scheduling heuristics [13] was investigated for cloud-
based streams. An adaptive scheduling mechanism [14]
used economic tools such as market, bidding, pricing, etc.
on an elastic grid utilizing virtual nodes from clouds.
Other tools and resource management systems used include
GridARM [15] and GLARE [16].

In Ref. [17], on-demand resource provisioning mecha-
nism based upon load was presented. In contrast, resource
provisioning in this paper is based on user objective and
metrics. The autonomic scheduler decides on the mix of
resource classes and the number of nodes depending on
user-defined objectives, the estimated runtime of tasks and
the cost calculated from the time-to-completion.

B. Objective Driven Hybrid Usage of HPC
Grids and Clouds

Developing and deploying applications on a hybrid and
dynamic computational infrastructure presents new and in-
teresting challenges. There is the need for programming
systems that can express the hybrid usage modes and
associated runtime trade-offs and adaptations, as well as
coordination and management infrastructures that can im-
plement them in an efficient and scalable manner. Key
issues include decomposing applications, components and
workflows, determining and provisioning the appropriate
mix of grids/clouds resources, and dynamically scheduling
them across the hybrid execution environment while satis-
fying/balancing multiple, possibly changing objectives for
performance, resilience, budgets and so on [18].

In Ref. [5], we investigated the integration of HPC grids
and clouds and how an autonomic framework was used to
support the following autonomic objectives:

• Acceleration: This use case explores how clouds can
be used as accelerators to improve the application time-
to-completion by, for example, using cloud resources
to alleviate the impact of queue wait times or exploit
an additionally level of parallelism by offloading ap-
propriate tasks to cloud resources, given appropriate
budget constraints.

• Conservation: This use case investigates how clouds
can be used to conserve HPC grid allocations, given
appropriate runtime and budget constraints.

• Resilience: This use case will investigate how clouds
can be used to handle unexpected situations such

as an unanticipated HPC grid downtime, inadequate
allocations or unanticipated queue delays.

C. Conceptual Architectures for Adaptivity
in Computational Science

Looking at existing practices in computational science,
two corresponding conceptual architectures can be ob-
served. As discussed in Ref. [19], both of these architectures
are composed of the application, a resource manager that
allocates, configures and tunes resources for the application,
and an autonomic manager that performs the tuning of
application and/or system parameters.

In the first conceptual architecture, the application and
resources are characterized using a number of dynamically
modifiable parameters/variables that have an impact on
the overall observed behavior of the application. Each of
these parameters has an associated range over which it
can be modified, and these constraints are known a priori.
The intention of the autonomic tuning manager is to alter
these parameters based on some overall required behavior
(referred to as the application objective) that has been
defined by the user. Tuning in this case is achieved by taking
into account, for example, (i) historical data about previous
runs of the application on known resources, obtained using
monitoring probes on resources; (ii) historical data about
previous selected values of the tunable parameters; (iii)
empirically derived models of application behavior; (iv) the
specified tuning mechanism and strategy; etc. For example,
an autonomic tuning mechanism in this architecture may
involve changing the size of the application (for instance,
the number of data partitions generated from a large data
set, the number of tiles from an image, etc.), or the set of
parameters over which execution is being requested. This
tuning is used to make desired tradeoffs between quality
of solution, resource requirements and execution time or to
ensure that a particular QoS constraint, such as execution
time, is satisfied.

Another conceptual architecture, where the application
is responsible for driving the tuning of parameters, and
choosing a tuning strategy. The autonomic tuning manager
is now responsible for obtaining monitoring data from
resource probes and the strategy specification (for one or
more objectives to be realized) from the application. Tuning
now involves choosing a resource management strategy that
can satisfy the objectives identified by the application. An
example of such an architectural approach is the use of
resource reservation to achieve a particular QoS require-
ment. The G-QoSM framework [20] demonstrates the use
of such an architecture, involving the use of a soft real-
time scheduler (DSRT) along with a bandwidth broker to
make resource reservation over local compute, disk and
network capacity, in order to achieve particular application
QoS constraints.

We conclude this sub-section with some observations:
A key underlying concept is the separation of management

and optimization policies from enabling mechanisms that
allows a repertoire of a mechanisms to be automatically
orchestrated at runtime to respond to the heterogeneity and
dynamics, both of the applications and the infrastructure.
Examples of mechanisms could be alternative numerical
algorithms, domain decomposition, and communication pro-
tocols. If this were an autonomics paper, we would focus
on developing policies and strategies that are capable of
identifying and characterizing patterns at design and at
runtime and, using relevant policies, to manage and opti-
mize the patterns. However, in this work we will not focus
on the policies and metrics that determine adaptivity, but
will focus on the capabilities and performance arising as a
consequence of the adaptivity.

We reiterate that the conceptual architectures – tuning
by and of applications, are not exhaustive [19], but provide
an initial formulation with a view towards understanding
adaptivity in the EnKF application that we investigate. As a
final observation, we note that application and system spe-
cific runtime adaptations are widely used in computational
science applications as a means for managing applications
and tuning performance. But supporting them on production
grade infrastructure and at scale has been challenging.

III. Application Characterization and Dy-
namic Execution
A. Reservoir Characterization: EnKF-
based History Matching

EnKF represent a promising approach to history match-
ing [21], [22], [23], [24]. EnKF are recursive filters that
can be used to handle large, noisy data; the data in this
case are the results and parameters from an ensemble of
reservoir models that are sent through the filter to obtain the
“true state” of the data. Since the model varies from one
ensemble member to another, the run-time characteristics
of the ensemble simulation are irregular and hard to pre-
dict. Furthermore, during simulations, when real historical
data is available, all the data from the different ensemble
members at that simulation time must be compared to the
actual production data before the simulations are allowed to
proceed. This translates into a global synchronization point
for all ensemble members in any given stage.

The variation in computational requirements between
individual tasks and stages can be large. As a result, efficient
execution of large scale complex reservoir characterization
studies requires dynamic runtime management to ensure
effective resource utilization and load-balancing. Further-
more, since the computational requirements are no know
a priori, the application can potentially benefit from the
elasticity of cloud resources. For this reason, performing
large scale complex reservoir characterization studies can
benefit greatly from the use of a wide range of distributed,
high-performance and throughput as well as on-demand

computing resources.

B. CometCloud Overview
CometCloud [25] is an autonomic computing engine for

clouds and grids environments that enables the develop-
ment and execution of dynamic application workflows in
heterogeneous and dynamic clouds/grids infrastructures. It
supports the on-demand bridging of public/private clouds
and grids as well as autonomic cloudbursts. Conceptually,
CometCloud is composed of a programming layer, service
layer, and infrastructure layer. The infrastructure layer uses
the Chord self-organizing overlay [26], and the Squid [27]
information discovery and content-based routing substrate
build on top of Chord. The service layer provides a Linda-
like [28] tuple space. The programming layer provides the
basic framework for application development and man-
agement including the master/worker/BOT, workflow and
MapReduce/Hadoop [29], [30].

Key components of CometCloud include:
Workflow Manager: The workflow manager is responsi-

ble for coordinating the execution of the overall application
workflow, based on user-defined polices.

Estimators: Estimators provide an estimate for the com-
putational cost of each task. This estimate can be obtained
through a computational complexity model or through
quick, representative benchmarks.

Autonomic Scheduler: The autonomic scheduler uses
the estimator to compute anticipated runtimes for tasks on
available resource classes, and to determine the initial hy-
brid mix HPC grids/clouds resources based on user/system-
defined objectives, policies and constraints.

Grids/Clouds Agents: The grid/cloud agents are re-
sponsible for provisioning the resources on their specific
platforms, configuring workers as execution agents on these
resources, and appropriately assigning tasks to these work-
ers. CometCloud primarily supports a pull-based model for
task allocation, where workers directly pull tasks from the
Comet space. However, on typical HPC grid resources with
a batch queuing system, a combined push-pull model is
used, where we insert “pilot-jobs” [31] containing workers
into the batch queues and the workers then pull tasks from
the Comet space when they are scheduled to run.

At each stage of the workflow, the workflow manager
determines the number of ensemble members at the stage as
well as relative computational complexity of each member
and then it encapsulates each ensemble member as a task.
Once the tasks to be scheduled within a stage have been
identified, the autonomic scheduler analyzes the tasks and
their complexities to determine the appropriate mix of Ter-
aGrid (TG) and EC2 resources that should be provisioned.
This is achieved by (1) clustering tasks based on their
complexities to generate blocks of tasks for scheduling, (2)
estimating the runtime of each block on the available re-
sources using the cost estimator service and (3) determining

the allocations as well as scheduling policies for the TG and
EC2 based on runtime estimates as well as overall objectives
and resource specific policies and constraints (e.g., budgets).
More details are described in [5].
C. Dynamic Execution and Adaptivity of
EnKF using CometCloud

As stated earlier, we consider two types of adaptivity in
this paper. Infrastructure adaptivity explores a richer infras-
tructure space and selects appropriate numbers and types
(e.g., number and type of virtual machines), of resources
based on application requirements and overall constraints.
The second type of adaptivity is application adaptivity
which involves adapting the structure and behavior of
the applications based on application/system characteristics
(e.g., the size of ensemble members, problem size and
application configuration) and runtime state.

Infrastructure adaptivity is achieved by estimating each
ensemble member’s runtime on available resources and se-
lecting the most appropriate resources for them. To estimate
runtime on each different resource class, the CometCloud
autonomic scheduler asks a worker per resource class to
run the runtime estimation module, which is achieved by
inserting a runtime estimation (benchmark) task into the
Comet space. A worker running on each resource class pulls
the task, executes it and returns the estimated runtime back
to the scheduler.

If there is no active worker on a resource class, the
scheduler launches a new worker on the resource class.
The overhead of running an estimation task itself is 5%
of that of an actual task. However, if the scheduler should
start a new worker for estimation, it can cause additional
time overhead, for example, the overhead of launching a
new EC2 instance, or the waiting time in a queue after
submitting a pilot job for TG. This runtime estimation is
accomplished at the beginning of every stage because each
stage is heterogeneous and the runtime of the previous stage
can not be used for the next stage. Once the autonomic
scheduler gathers estimated runtimes from all resource
classes, it maps the ensemble members (encapsulated as
asks) to the most appropriate available resource class based
on the defined policy. Policies determine whether runs are
made with deadline-based or cost-based (i.e. with budget
limits). After then the scheduler decides the number of
nodes (workers) for each resource class and the appropriate
mix of resources. Naturally, workers can consume more than
one task and the number of workers is typically smaller than
the number of tasks.

Application adaptivity on the other hand relies heavily on
the application infrastructure. Since the reservoir simulator
is based on PETSc [32], we have access to a wide variety
of direct and iterative solvers and preconditioners. The
selection of optimal solver and preconditioner combination
depends on the problem (stiffness, linearity, properties of
the system of equations, etc.) as well as the underlying

EnKF application

CometCloud

Cloud

Grid
Agent

Pull TasksPull Tasks

Push Tasks

HPC Grid

Mgmt. Info. Mgmt. Info.

HPC Grid CloudCloud

Cloud
Agent

Workflow
manager

Runtime
estimator

Autonomic
scheduler

Monitor

Analysis

Adaptation

Adaptivity
Manager

Application
adaptivity

Infrastructure
adaptivity

Fig. 1: Autonomic architecture for adaptivity. Workflow manager,
runtime estimator, autonomic scheduler as well as adaptivity
manager collaborate to reach a decision regarding the best resource
provisioning and application configuration.

infrastructure. Since the simulator needs to perform sev-
eral iterations, the first few iterations are performed with
several solver/preconditioner combinations. This “optimiza-
tion” study is performed with ensemble member rank 0
only, also known as the “base–case” from which all other
ensemble members are generated. The combination with
the best performance (shortest wall-clock time) is then
selected and passed on to the next stage to reduce simulation
runtime.

The overall system architecture used in the experiments
is shown in Figure 1. Every stage of the application work-
flow is heterogeneous, and as a result, the selection of
infrastructure and application configurations for each stage
can be different. At every stage, the autonomic manager
collects information about both, the infrastructure and the
application, and analyzes this information to decide on ap-
propriate resources and application configuration. These de-
cisions affect both current stages (infrastructure adaptivity)
as well as subsequent stages (application adaptivity). After
reaching a decision on the most efficient infrastructure/ap-
plication configurations and mix of resources, resources are
provisioned and “ensemble-member-workers” are executed.
On the EC2, this translates to launching appropriate VMs
running custom images. On the TG, ensemble-member-
workers are essentially “pilot jobs” [31] that are inserted
into the queue. The workflow manager inserts tasks into
CometCloud and ensemble-workers directly access Comet-
Cloud and retrieve tasks based on the enforced scheduling
policy. TG workers are allowed to pull the largest tasks first,
while EC2 workers pull the smallest tasks. While this policy
is not optimal, it was sufficient for our study. During the
execution, the workflow manager monitors the executions
of the tasks to determine progress and to orchestrate the
execution of the overall workflow. The autonomic scheduler
also monitors the status of the resources (using the agents),
and determines progress to ensure that the scheduling ob-
jectives and policies/constraints are being satisfied, and can
dynamically change resources allocation if they cannot be

satisfied.
It is possible that for a given user defined deadline,

that the objective of finishing all tasks at or before the
deadline not be met. This could be simply due to insufficient
resources for the computational load as a consequence of the
deadline imposed; or it could be due to autonomic schedul-
ing efficiency. In this paper, we focus on the situation where
the objective of accelerating the solution/TTC on the TG by
using EC2 is successful. In addition to the efficiency of the
autonomic scheduler (which we do not analyze here), the
relative capacity of the TG & EC2 resources will determine
the maximum value of acceleration possible for a given
workload. In other words, with the addition of sufficiently
large number of cloud resources – possibly of different types
of clouds, any imposed deadline will be met for a given
workload.

IV. Experiments
Our experiments are organized with the aim of under-

standing how application and infrastructure adaptivity facili-
tate desired objectives to be met. Specifically, we investigate
how adaptivity – application or infrastructure, or possibly
both in conjunction, enable lowering of the TTC, i.e.,
acceleration. We explore, (1) how the autonomic scheduler
reduces TTC when a deadline is specified, and 2) how
adaptation helps achieve the desired objective by facilitating
an optimized application &/or infrastructure configuration,
or via autonomic scheduling decisions when multiple types
of cloud resources are available.

We use a small number of stages of the EnKF workflow
with a finite difference reservoir simulation of problem size
20x20x20 gridpoints and 128 ensemble members with het-
erogeneous computational requirements. Our experiments
are performed on the TG (specifically Ranger) and several
instance types of EC2. Table I shows the EC2 instance types
used for experiments. We assume that a task assigned to a
TG node runs on all 16 cores for that node (for Ranger).

TG provides better performance than EC2, but is also
the relatively more restricted resource – in that there are
often queuing delays. Hence, we use EC2 which is available
immediately at a reasonable cost to accelerate the solution
of the problem. A task pulled by EC2 node runs sequentially
(in case of m1.small which has a single core), or in parallel
(other instance types with multiple cores) inside a single
VM. To enable MPI runs on multi-core EC2 instance, we
created a MPI-based image on EC2. This image included
the latest versions of compilers, MPICH2, PETSc and
HDF5 and was configured for performance above all else.
Although we experimented with using MPI across multiple
VMs as described in Section IV-C, we exclude using data
from experiments involving running MPI across VMs in
the analysis of understanding the effect of adaptivity; as is
expected, due to communication overheads, it displays poor

Instance type Cores Memory(GB) Platform(bit) cost($/hour)
m1.small 1 1.7 32 0.1
m1.large 2 7.5 64 0.34
m1.xlarge 4 15 64 0.68
c1.medium 2 1.7 32 0.17
c1.xlarge 8 7 64 0.68

TABLE I: EC2 instance types used in experiments
performance as compared to MPI within a single VM.
A. Baseline: Autonomic Scheduling (Accel-
eration) in Response to Deadlines

When the deadline by when all tasks must be completed
has been determined/decided, the autonomic scheduler es-
timates TTC, first assuming the availability of only TG
resource. The scheduler then decides how much of the
workload should be migrated to EC2 in order to meet the
given deadline. If the deadline is sooner than the estimated
TTC (assuming usage of only TG resources), the number
of tasks which should be off-loaded onto EC2 is decided
and the autonomic scheduler selects the appropriate EC2
instance types and number of such nodes. It then allocates
the appropriate number of nodes of the selected instance
types.

The autonomic scheduler has no knowledge of runtime
characteristics of tasks on different resources, the sched-
uler makes decisions based on estimated runtime from
the runtime estimator. The runtime estimator is a simple
utility that launches a full-size ensemble member simulation
with a reduced number of iterations to minimize cost. The
results of various ensemble members are tabulated and used
to predict the full runtime cost of a complete ensemble
member simulation.

In this experiment set, we limit EC2 instance types to
m1.small and c1.medium, and run the EnKF with 2 stages,
128 ensemble members. For baseline experiments/perfor-
mance numbers, we do not try to optimize using adaptivity
(neither application-level nor infrastructure adaptivity. Fig-
ure 2 depicts the TTC for different values of imposed dead-
lines and thus gives quantitative information on acceleration
provided by the autonomic scheduler to meet deadlines. The
imposed deadline is assumed to be 120, 108, 96, 72 and 24
minutes respectively; this corresponds to 0%, 10%, 20%,
40% and 80% acceleration, based upon the assumption that
a deadline of 120 minutes (0% acceleration) corresponds
to a TTC when only TG nodes are used. Figure 2 (a)
shows TTC for stage 1 and stage 2 where each stage is
heterogeneous and all tasks are completed by the deadline
(for all cases).

Figure 2 (b) shows the number of tasks completed by
the TG and number off-loaded onto EC2, as well as the
number of allocated EC2 nodes for each stage. As the
deadline becomes shorter, more EC2 nodes are allocated,
hence, the number of tasks consumed by EC2 increases.
Because m1.small have relatively poorer performance com-
pared to c1.medium, the autonomic scheduler only allocates
c1.medium instances for both stages. Figure 2 (c) shows

TTC

0

20

40

60

80

100

120

140

120 108 96 72 24
Deadline (minute)

Ti
m

e
(m

in
ut

e)
stage1
stage2

(a) Time To Completion

Task consumption

0

50

100

150

200

250

300

350

400

450

120 108 96 72 24
Deadline (minute)

Nu
m

be
r o

f t
as

ks

0

5

10

15

20

25
nu

m
be

r o
f E

C2
 n

od
es

stage2-TG tasks
stage2-EC2 tasks
stage1-TG tasks
stage1-EC2 tasks
stage1-allocated EC2 nodes
stage2-allocated EC2 nodes

(b) Task consumption

EC2 Cost

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

120 108 96 72 24
Deadline (minute)

C
os

t (
$)

stage1-estimated cost
stage2-estimated cost
stage1-experimental cost
stage2-experimental cost

(c) EC2 cost

Fig. 2: Results from baseline experiments (without adaptivity) but
with a specified deadline. We run the EnKF with 2 stages , 128
ensemble members and limit EC2 instance types to m1.small and
c1.medium. Tasks are completed within a given deadline. The
shorter the deadline, the more EC2 nodes are allocated.
costs incurred on EC2. As more EC2 nodes are used for
shorter deadlines, the EC2 cost incurred increases. The
results also show that most tasks are off-loaded onto EC2
in order to meet the “tight” deadline of finishing within 24
minutes.

B. Track 1: Infrastructure adaptations

The goal of experiment involving infrastructure-level
adaptivity (track-1) is to investigate advantages – perfor-
mance or otherwise, that may arise from the ability to

Infrastructure Adaptivity (stage2)

0

20

40

60

80

100

120

140

120 108 96 72 24
Deadline (minute)

Ti
m

e
(m

in
ut

e)

non-adaptive runtime
infrastructure-adaptive runtime

(a) Time To Completion

EC2 Cost (stage2)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

120 108 96 72 24
Deadline (minute)

C
os

t (
$)

0

5

10

15

20

25

30

35

nu
m

be
r o

f n
od

es

non-adaptive cost
infrastructure-adaptive cost
non-adaptive number of c1.medium
infra-adaptive number of c1.xlarge

(b) EC2 cost

Fig. 3: Experiments with infrastructure adaptivity. We limit EC2
instance types to m1.small and c1.medium for non-adaptive run
and use all types described in Table I for infrastructure-adaptive
run. The TTC is reduced with infrastructure adaptivity at additional
cost.

dynamically select appropriate infrastructure, and possibly
vary them between the heterogeneous stages (of the ap-
plication workflow). Specifically, we see if any additional
acceleration (compared to the baseline experiments) can be
obtained. In order to provide greater variety in resource
selection, we include all EC2 instance types from Table I;
these can be selected in stage 2 of the EnKF workflow.
C. Track 2: Adaptations in application exe-
cution

In this experiment we run ensemble member rank 0 with
variations in solvers/preconditioners and infrastructure. In
each case, ensemble rank 0 was run with a solver (general-
ized minimal residual method GMRES, conjugate gradient
CG or biconjugate gradient BiCG), a preconditioner (block
Jacobi or no preconditioner) for a given problem size with
a varying number of cores (1 through 8). Two infrastructure
solutions were available: a single c1.xlarge or 4 c1.medium
instances.
D. Track 3: Adaptations at the application
and infrastructure levels

In this experiment set, we explore both infrastructure as
well as application-level adaptivity. We try infrastructure-

Scaling for 20x10x10

0

100

200

300

400

500

600

700

1 2 4 8
Number of cores (c1.medium, 2 cores per VM)

Ti
m

e
(s

ec
on

ds
)

 ..

20x10x10_gmres_none
20x10x10_cg_none
20x10x10_bicg_none
20x10x10_gmres_bjacobi
20x10x10_cg_bjacobi
20x10x10_bicg_bjacobi

Scaling for 20x20x20

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8
Number of cores (c1.medium, 2 cores per VM)

Ti
m

e
(s

ec
on

ds
)

..

20x20x20_gmres_none
20x20x20_cg_none
20x20x20_bicg_none
20x20x20_gmres_bjacobi
20x20x20_cg_bjacobi
20x20x20_bicg_bjacobi

Scaling for 40x20x20

0

200

400

600

800

1000

1200

1 2 4 8
Number of cores (c1.medium, 2 cores per VM)

Ti
m

e
(s

ec
on

ds
)

..

40x20x20_gmres_none
40x20x20_cg_none
40x20x20_bicg_none
40x20x20_gmres_bjacobi
40x20x20_cg_bjacobi
40x20x20_bicg_bjacobi

Scaling for 20x10x10

0

10

20

30

40

50

60

70

1 2 4 8
Number of cores (c1.xlarge, 8 cores per VM)

Ti
m

e
(s

ec
on

ds
)

 ..

20x10x10_gmres_none
20x10x10_cg_none
20x10x10_bicg_none
20x10x10_gmres_bjacobi
20x10x10_cg_bjacobi
20x10x10_bicg_bjacobi

Scaling for 20x20x20

0

50

100

150

200

250

300

1 2 4 8
Number of cores (c1.xlarge, 8 cores per VM)

Ti
m

e
(s

ec
on

ds
)

 ..

20x20x20_gmres_none
20x20x20_cg_none
20x20x20_bicg_none
20x20x20_gmres_bjacobi
20x20x20_cg_bjacobi
20x20x20_bicg_bjacobi

Scaling for 40x20x20

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8
Number of cores (c1.xlarge, 8 cores per VM)

Ti
m

e
(s

ec
on

ds
)

 ..

40x20x20_gmres_none
40x20x20_cg_none
40x20x20_bicg_none
40x20x20_gmres_bjacobi
40x20x20_cg_bjacobi
40x20x20_bicg_bjacobi

(a) Problem size 20×10×10 (b) Problem size 20×20×20 (c) Problem size 40×20×20

Fig. 4: Time to completion for simulations of various sizes with different solvers (GMRES, CG, BiCG) and block-Jacobi preconditioner.
Benchmarks ran on EC2 nodes with MPI. Problem size increases going from left to right. The top row is for a 2 core VM and the bottom
row is for an 8 core VM.

Application Adaptivity (stage2)

0

20

40

60

80

100

120

140

120 108 96 72 24
Deadline (minute)

Ti
m

e
(m

in
ut

e)

non-adaptive runtime
application-adaptive runtime

(a) Time To Completion

EC2 Cost (stage2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

120 108 96 72 24
Deadline (minute)

C
os

t (
$)

0

5

10

15

20

25

nu
m

be
r o

f n
od

es

non-adaptive cost
application-adaptive cost
number of c1.medium

(b) EC2 cost

Fig. 5: Experiments with application adaptivity. The optimized
application option is used for application-adaptive run. The TTC
is reduced with application adaptivity for equivalent or slightly
less cost.

level adaptivity in the first stage, followed by application-
level adaptivity in the second stage and hybrid adaptiv-
ity in the third stage. In principle the final performance
should not be sensitive to the ordering. We will com-
pare hybrid-adaptivity to application-adaptivity, as well as
infrastructure-adaptivity.

V. Analysis
A. Track 1: Infrastructure adaptations

Figure 3 shows TTC and EC2 cost, with and without
infrastructure adaptivity. Overall, TTC decreases when more
resource types are available and infrastructure adaptivity is
applied; this can be understood by the fact that the auto-
nomic scheduler can now select more appropriate resource
types to utilize. There is no decrease in the TTC when using
infrastructure adaptivity for a deadline of 120 because all
tasks are still completed by TG node (since it represent 0%
acceleration).

The difference between the TTC with and without
infrastructure-level adaptivity, decrease as the deadline be-
comes tighter; results show almost no savings with the 24
minutes deadline. This is mostly due to the fact that with a
24 minute deadline, a large number of nodes are allocated
thus no further gain can be obtained through infrastructure
adaptivity.

Figure 3 (b) shows the number of nodes allocated for
each run and the cost of their usage. The autonomic

Hybrid Adaptivity (stage3)

0

5

10

15

20

25

30

35

120 108 96 72 24
Deadline (minute)

Ti
m

e
(m

in
ut

e)
infrastructure-adaptive runtime
application-adaptive runtime
hybrid-adaptive runtime

(a) Time To Completion

EC2 Cost (stage3)

0.0
1.0

2.0
3.0
4.0
5.0

6.0
7.0
8.0

9.0
10.0

120 108 96 72 24
Deadline (minute)

C
os

t (
$)

0

5

10

15

20

25
nu

m
be

r o
f n

od
es

application-adaptive cost
infrastructure-adaptive cost
hybrid-adaptive cost
number of c1.medium
number of m1.xlarge
number of c1.xlarge

(b) EC2 cost

Fig. 6: Experiment with adaptivity applied for both infrastructure
and application. The TTC is reduced further than with application
or infrastructure adaptivity on its own. The cost is similar to that
in infrastructure adaptivity for durations less than one hour since
EC2 usage is billed hourly with a one hour minimum.

scheduler selects only c1.xlarge to use for infrastructure-
adaptive runs because the runtime estimator predicts that
all tasks will run fastest on c1.xlarge. On the other hand
the scheduler selects only c1.medium for non-adaptive runs.
Infrastructure-adaptive runs cost more than non-adaptive
runs, roughly 2.5 times more at the 24 minute deadline even
though the number of nodes for non-adaptive runs is larger
than the number of nodes for infrastructure-adaptive runs.
This is because the hourly cost of c1.xlarge is much higher
than c1.medium (see Table I) and both TTCs are rather
short (less than half hour). Since we used deadline-based
policy, the autonomic scheduler selects the best performing
resource regardless of cost; however, when we switch poli-
cies to include economic factors in the autonomic scheduler
decision making (i.e., considering TTC as well as cost for 24
minutes deadline), the scheduler selects c1.medium instead
of c1.xlarge.
B. Track 2: Adaptations in application exe-
cution

Figure 4 shows the time to completion of an individual
ensemble member, in this case ensemble rank 0 with vari-

ous solver/preconditioner combinations. For experiments in
track-2, we varied over two different types of infrastruc-
ture, each with 4 different core counts (1, 2, 4 and 8) and
three problem sizes. We investigated six combinations of
solvers and preconditioners over the range of infrastructure.
Naturally, there is no one, single, solver/preconditioner
combination that works for all problem sizes, infrastructures
and core counts. Note the experiments were carried out
on different infrastructure, but the infrastructure was not
adaptively varied..

For example figure 4 (bottom right) shows that a problem
of size 40x20x20 is best solved on 4 cores in a c1.xlarge
instance with a BiCG solver and a block Jacobi precondi-
tioner. This is different from the 2 core, BiCG solver and no
preconditioner combination for a 20×10×10 problem on a
c1.medium VM (figure 4 top left).

Basic profiling of the application suggests that most
of the time is spent in the solver routines, which are
communication intensive. As there is no dedicated, high
bandwidth, low latency interconnect across instances, MPI
performance will suffer, and subsequently MPI intensive
solvers. The collective operations in MPI are hit hardest, af-
fecting Gram-Schmidt orthogonalization routines adversely.
Conjugate gradient solvers on the other hand are optimal
for banded diagonally dominant systems (as is the case in
this particular problem) and require less internal iterations
to reach convergence tolerance.

From Fig.4 we see that as the problem size increases
(moving from left to right), the performance profile changes.
Comparison of the profiling data suggests that a smaller
percentage of simulation time is spent in communication as
the problem size increases. This is obviously due to the fact
that there are larger domain partitions for each instance to
work on. Detailed profiling of inter–instance MPI bandwidth
and latency is still underway however early results suggest
that this trend continues.

Figure 5 shows (a) TTC and (b) EC2 cost using applica-
tion adaptivity. Applying an optimized application configu-
ration reduces TTC considerably. Application configuration
does not affect the selection of infrastructure and the number
of nodes, hence, the cost depends on TTC. However, since
EC2 costs are billed on an hourly basis (with a minimum
of one hour), the decrease in cost does not match the
decrease in TTC. For example, at 108 minute deadline, the
time difference between non-adaptive mode and application-
adaptive mode is more than one hour, hence, the cost of
application-adaptive mode reduces half. However, because
TTCs are all within one hour for other deadlines, EC2 costs
are the same for them.
C. Track 3: Adaptations at the application
and infrastructure levels

Figure 6 shows TTCs and EC2 costs; the white columns
correspond to infrastructure adaptivity TTC (stage 1), the
light blue columns correspond to application adaptivity

TTC (stage 2) and the dark blue columns correspond to
hybrid adaptivity TTC. As mentioned earlier, the application
spends most of its time in the iterative solver routine. The
application also runs twenty time-steps for each of the 128
simulations. Therefore, the potential for improvement in
TTC from solver/preconditioner selection is substantial. As
we expect, the TTC of infrastructure-adaptive runs are larger
than those of application-adaptive runs, especially since
infrastructure adaptivity occurs once per every stage and
application adaptivity influences every solver iteration. As is
evident from figure 6 (a), both infrastructure and application
adaptivity result in TTC reduction, and even more so when
used simultaneously.

The cost for using infrastructure adaptivity is higher than
that of using application adaptivity (figure 6 b). This is due
to the simple fact that application adaptivity improves the
efficiency of the application without the need for an increase
in resources. It is worth mentioning that ours is a special
case as the application depends heavily on a sparse matrix
solve with an iterative solver. Other applications that use
explicit methods cannot make use of application adaptivity
(no solvers).

VI. Conclusion and Future Work
In summary, by developing and analyzing a dynamic

workflow application to by explore a rich set of infrastruc-
ture as well as application configurations, we established the
benefits of hybrid HPC grids-clouds execution modes. We
also investigated application or/and infrastructure adaptivity
and determined how the adaptations affect performance as
measured by time-to-completion, as well as cost. To achieve
these objectives, we built an autonomic adaptation engine
inside of CometCloud, consisting of an autonomic adap-
tivity manager along with the workflow manager, runtime
estimator, autonomic scheduler, and grids/clouds agent.

Experimental results show that time-to-completion de-
creases with both system or application-level adaptivity.
We also observe that the time-to-complete decreases further
when applying both the system and application-level adap-
tivity. Furthermore, while EC2 cost decreases when appli-
cation adaptively is applied, it increases when infrastructure
adaptivity is applied. This is despite a reduced time-to-
completion, and is because adaptation causes the application
to use more expensive instance types.

The new autonomic capabilities added to the Comet-
Cloud engine enable it to schedule complex workflows with
varying costs, objective functions and satisfy goals such as
reduced time-to-completion or reduced total-cost etc. in a
hybrid HPC Grid-Cloud environment. While our work so
far has been focused on EnKF inverse problem workflow
(a fairly straightforward, linear workflow), workflows such
as parameter or model surveys can similarly be scheduled.
Investigation of more complex workflows and their schedul-
ing is still in the planning phase. Some challenges that

we anticipate include scheduling nonlinear and conditional
tasks as well as “while–loop” workflows. These types of
complex workflows cannot be easily analyzed for cost, and
are unpredictable a priori. However, the autonomic and
adaptive capabilities we developed will play a major part
in resolving these issues.

In the near future we will be working on expanding
our cloud infrastructure integration to include Eucalyptus
and Nimbus clouds. Proper performance investigation of
the reservoir simulator (including MPI message frequency,
size, latency, bandwidth and so on) is also being studied.
In terms of optimization, work will begin on investigating
the effects of network performance for file transfer as well
as VM optimization. Finally, we intend to revisit other
autonomic objectives (conservation and resilience) with the
newly developed autonomic layer.

Acknowledgements
The research presented in this paper is supported in part by National
Science Foundation via grants numbers IIP 0758566, CCF-0833039, DMS-
0835436, CNS 0426354, IIS 0430826, and CNS 0723594, by Department
of Energy via grant numbers DE-FG02-06ER54857 DE-FG02- 04ER46136
(UCoMS), by a grant from UT Battelle, and by an IBM Faculty Award,
and was conducted as part of the NSF Center for Autonomic Computing
at Rutgers University. Experiments on the Amazon Elastic Compute Cloud
(EC2) were supported by a grant from Amazon Web Services and CCT
CyberInfrastructure Group grants. SJ and MP would like to acknowledge
the e-Science Institute, Edinburgh for supporting the Research theme on
Distributed Programming Abstractions. YE would like to acknowledge Dr.
Christopher White, Dr. Kent Milfeld and Mr Bob Garza.

References

[1] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud
computing: A view of scientific applications,” in Pervasive Systems,
Algorithms, and Networks (ISPAN), 2009 10th International Sympo-
sium on, dec. 2009, pp. 4 –16.

[2] S. Ostermann, R. Prodan, and T. Fahringer, “Extending grids with
cloud resource management for scientific computing,” in Grid Com-
puting, 2009 10th IEEE/ACM International Conference on, oct. 2009,
pp. 42 –49.

[3] K. Chine, “Scientific computing environments in the age of vir-
tualization toward a universal platform for the cloud,” in Open-
source Software for Scientific Computation (OSSC), 2009 IEEE
International Workshop on, sept. 2009, pp. 44 –48.

[4] Cyclone. http://www.sgi.com/products/hpc cloud/cyclone/.
[5] H. Kim, Y. el Khamra, S. Jha, and M. Parashar, “An autonomic

approach to integrated hpc grid and cloud usage,” in e-Science, 2009.
e-Science ’09. Fifth IEEE International Conference on, Dec. 2009,
pp. 366–373.

[6] Y. E. Khamra and S. Jha, “Title: Developing Autonomic Distributed
Scientific Applications: A Case Study From History Matching Using
Ensemble Kalman-Filters,” in Sixth International Conference on
Autonomic Computing, 2009. ICAC ’09 (Barcelona). IEEE, 2009.

[7] Y. Y. El-Khamra, “Real-time reservoir characterization and be-
yond: Cyberinfrastructure tools and technologies,” Master’s thesis,
Louisiana State University, Baton Rouge, Louisiana, 2009.

[8] M. D. de Assuncao, A. di Costanzo, and R. Buyya, “Evaluating
the cost-benefit of using cloud computing to extend the capacity of
clusters,” in HPDC ’09: Proceedings of the 18th ACM international
symposium on High performance distributed computing. New York,
NY, USA: ACM, 2009, pp. 141–150.

[9] C. Vazquez, E. Huedo, R. Montero, and I. Llorente, “Dynamic
provision of computing resources from grid infrastructures and cloud
providers,” in Grid and Pervasive Computing Conference, 2009. GPC
’09. Workshops at the, may 2009, pp. 113 –120.

[10] T. Freeman and K. Keahey, “Flying low: Simple leases with
workspace pilot,” in Euro-Par, 2008, pp. 499–509.

[11] H. Kim, S. Chaudhari, M. Parashar, and C. Marty, “Online risk
analytics on the cloud,” in Cluster Computing and the Grid, 2009.
CCGRID ’09. 9th IEEE/ACM International Symposium on, May
2009, pp. 484–489.

[12] A. Ozer and C. Ozturan, “An auction based mathematical model and
heuristics for resource co-allocation problem in grids and clouds,” in
Soft Computing, Computing with Words and Perceptions in System
Analysis, Decision and Control, 2009. ICSCCW 2009. Fifth Interna-
tional Conference on, sept. 2009, pp. 1 –4.

[13] P. Martinaitis, C. Patten, and A. Wendelborn, “Remote interaction and
scheduling aspects of cloud based streams,” in E-Science Workshops,
2009 5th IEEE International Conference on, dec. 2009, pp. 39 –47.

[14] L. Nie and Z. Xu, “An adaptive scheduling mechanism for elastic
grid computing,” Semantics, Knowledge and Grid, International
Conference on, vol. 0, pp. 184–191, 2009.

[15] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid
information services for distributed resource sharing,” in High Per-
formance Distributed Computing, 2001. Proceedings. 10th IEEE
International Symposium on, 2001, pp. 181 –194.

[16] M. Siddiqui, A. Villazon, J. Hofer, and T. Fahringer, “Glare: A grid
activity registration, deployment and provisioning framework,” SC
Conference, vol. 0, p. 52, 2005.

[17] T. Dornemann, E. Juhnke, and B. Freisleben, “On-demand resource
provisioning for bpel workflows using amazon’s elastic compute
cloud,” in CCGRID ’09: Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid. Wash-
ington, DC, USA: IEEE Computer Society, 2009, pp. 140–147.

[18] S Jha, D S Katz, A Luckow, A Merzky and K Stamou, Understanding
Scientific Applications for Cloud Environments, submitted to book
on Cloud Computing, Edited by Raj Kumar Buyya, to be published
by Wiley
draft available at: http://cct.lsu.edu/∼sjha/select\ publications/cloud
book chapter.pdf.

[19] S. Jha, M. Parashar, and O. Rana, “Investigating autonomic be-
haviours in grid-basedcomputational science applications,” in GMAC
’09: Proceedings of the 6th international conference industry session
on Grids meets autonomic computing. New York, NY, USA: ACM,
2009, pp. 29–38.

[20] R. J. Al-Ali, K. Amin, G. von Laszewski, O. F. Rana, D. W.
Walker, M. Hategan, and N. J. Zaluzec, “Analysis and Provision of
QoS for Distributed Grid Applications,” Journal of Grid Computing
(Springer), vol. 2, no. 2, pp. 163–182, 2004.

[21] R. E. Kalman, “A new approach to linear filtering and
prediction problems.” [Online]. Available: http://www.cs.unc.edu/
∼welch/kalman/media/pdf/Kalman1960.pdf

[22] Y. Gu and D. S. Oliver, “An iterative ensemble kalman filter for
multiphase fluid flow data assimilation,” SPE Journal, vol. 12, no. 4,
pp. 438–446, 2007.

[23] X. Li, C. White, Z. Lei, and G. Allen, “Reservoir model updating
by ensemble kalman filter-practical approaches using grid comput-
ing technology,” in Petroleum Geostatistics 2007, Cascais,Portugal,
August 2007.

[24] Y. Gu and D. S. Oliver, “The ensemble kalman filter for continuous
updating of reservoir simulation models,” Journal of Engineering
Resources Technology, vol. 128, no. 1, pp. 79–87, 2006.

[25] H. Kim, M. Parashar, L. Yang, and D. Foran, “Investigating the use
of cloudbursts for high throughput medical image registration,” in
Proceedings of the 10th IEEE/ACM International Conference on Grid
Computing (Grid 2009), 2009.

[26] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer
lookup protocol for internet applications,” in ACM SIGCOMM, 2001,
pp. 149–160.

[27] C. Schmidt and M. Parashar, “Squid: Enabling search in dht-based

systems,” J. Parallel Distrib. Comput., vol. 68, no. 7, pp. 962–975,
2008.

[28] N. Carriero and D. Gelernter, “Linda in context,” Commun. ACM,
vol. 32, no. 4, pp. 444–458, 1989.

[29] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[30] Hadoop. http://hadoop.apache.org/core/.
[31] Thain D, Tannenbaum T and Livny M 2005 Distributed Computing

in Practice: The Condor Experience Concurrency - Practice and
Experience 17 2-4 323-56.

[32] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Web page,” 2001,
http://www.mcs.anl.gov/petsc.

