Case Study for Running HPC Applications in Public Clouds

Qiming He
o Open Research, Inc.
Qiming.He@openresearchinc.com

ABSTRACT

Cloud computing is emerging as an alternative computing
platform to bridge the gap between scientists’ growing com-
putational demands and their computing capabilities. A sci-
entist who wants to run HPC applications can obtain mas-
sive computing resources ‘in the cloud’ quickly (in minutes),
as opposed to days or weeks it normally takes under tradi-
tional business processes. Due to the popularity of Amazon
EC2, most HPC-in-the-cloud research has been conducted
using EC2 as a target platform. Previous work has not in-
vestigated how results might depend upon the cloud plat-
form used. In this paper, we extend previous research to
three public cloud computing platforms. In addition to run-
ning classical benchmarks, we also port a ‘full-size’ NASA
climate prediction application into the cloud, and compare
our results with that from dedicated HPC systems. Our re-
sults show that 1) virtualization technology, which is widely
used by cloud computing, adds little performance overhead;
2) most current public clouds are not designed for running
scientific applications primarily due to their poor network-
ing capabilities. However, a cloud with moderately better
network (vs. EC2) will deliver a significant performance im-
provement. Our observations will help to quantify the im-
provement of using fast networks for running HPC-in-the-
cloud, and indicate a promising trend of HPC capability
in future private science clouds. We also discuss techniques
that will help scientists to best utilize public cloud platforms
despite current deficiencies.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Performance evaluation

General Terms
Performance

*This author is also affiliated with University of Maryland,
Baltimore County(szhou@umbc.edu).

Shujia Zhou' , Ben Kobler, Dan Duffy,

Tom McGlynn
NASA Goddard Space Flight Center

{shujia.zhou, benjamin.kobler,
daniel.q.duffy,
thomas.a.mcglynn}@nasa.gov

Keywords
Cloud Computing, High-Performance Computing, Bench-
marks

1. INTRODUCTION

Scientists are often interested in problems that are too small
for supercomputers like IBM Blue Gene series, but too big
for desktop PC or typical facility computers. Traditional
computing resource provisioning does not provide a timely
and economical solution to satisfy their needs, mostly due to
operational inefficiency such as prolonged procurement and
installation processes and high maintenance cost.

Cloud computing [23][1] is emerging as an alternative com-
puting platform to bridge the gap between scientists’ grow-
ing computational demands and their local computing ca-
pabilities. Recent years have seen an increasing adoption
of cloud computing in a wide range of scientific disciplines,
such as high-energy and nuclear physics, bioinformatics, as-
tronomy and climate research [6]. Cloud computing is also
an excellent collaboration tool that allows scientists to share
information globally, and replicate others’ work in the cloud
that contains identical application, datasets and environ-
mental settings.

In this paper, we focus on evaluating the technical capabil-
ity of current public cloud computing platforms, and their
suitability for running scientific applications, especially High
Performance Computing (HPC) applications. We have built
upon the work of previous researchers in compiling a suite
of HPC benchmarks and port them into three public clouds.

Evaluating platforms’ capabilities and benchmarking results,
we note that current public clouds do not seem to be opti-
mized for running scientific applications. Many public cloud
platforms have slow network connections between virtual
machines (VM), which often becomes a bottleneck for run-
ning some HPC applications. However, in contrast to the
results obtained by previous researchers using EC2 [28][21],
we have obtained some satisfactory results from a public
cloud with relatively faster and more consistent networks.

While current HPC systems in the cloud are far less powerful
than dedicated supercomputers, our work provides evidence
that fast interconnection will significantly improve the scal-
ability and performance of a cloud-based HPC system. We
believe this work will show a promising trend of increasingly
powerful HPC capability in future science clouds with faster

networks, like NASA’s Nebula [22] and DOE’s Magellan [7].

For scientists who wish to port their applications into a cur-
rent public cloud, it is essential for them to understand its
HPC capability before deploying their applications. Due
to suppliers’ unspecified implementations, the performance
delivered by a cloud HPC system could be quite different
from their in-house systems, even though two systems have
similar processors, memory and cluster size.To understand a
cloud’s HPC capability quantitatively, scientists can choose
benchmarks close to the nature of their applications (e.g.,
solving linear equation, Monte Carlo simulation) and cre-
ate a cloud image including both, so that they can quickly
benchmark HPC capability of any size cluster before running
time-consuming applications packed in the same image. In
order to avoid inter-process communication over slow net-
work and best utilize increasingly popular multi-core pro-
cessors, scientists may also need to consider changing their
programming paradigm and/or find application best suited
to run in the cloud. Cloud computing allows users to install
any software (as root) to support their programming. For
example, we updated gcc from 4.1 (in base OS) to 4.4 to
have OpenMP supported from the compiler. Such flexibil-
ity is not normally available to end-user in a dedicated HPC
system.

Some HPC providers allocate computing resources for users’
proposed research work. Their HPC facilities may not grow
at the same pace as ever-growing computational demands, or
could be limited by local power supply. Instead of rejecting
users’ applications, they may consider redirecting users’ re-
quests to a public cloud as an alternative platform. This will
not only allow HPC capability to grow more economically,
but may also reduce ‘time-to-solution’ from user perspec-
tive. For example, dedicated HPC systems normally use job
queue [3]. In peak hours, user submitting a job request may
have 25% chance to have their cluster ready in 100 seconds,
and 75% chance in 1000 seconds. From our experience, we
can have entire cloud cluster provisioned in less than 5 min-
utes, and thus save a considerable amount of time which
would otherwise be spent to request a cluster from a job
queue.

This paper is organized as follows: in section 2, we define
our scope and approach in our case study; in section 3, we
detail our experiment setup including benchmarks, applica-
tions and specifications for public cloud platforms; in sec-
tion 4, we present experiment results and our analysis; in
section 5, we conclude this paper with some forward-looking
remarks.

2. BACKGROUND AND METHODOLOGY

According to NIST definition [23], cloud computing is a
model for enabling convenient, on-demand metwork access
to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction..... However,
cloud computing means different things to different people,
ranging from using web-based email to externalizing data
storage. In this paper, we choose IAAS (Infrastructure-As-
A-Service) type of cloud where we have full control of a VM
(guest OS) to install applications and customize computing

environment. Our focus is primarily on running HPC (i.e.,
computing-intensive) applications in the cloud.

Most public cloud computing suppliers allow users to cre-
ate an arbitrary size cluster of cloud servers. For HPC-
like applications, users would like to choose the ‘highest’
cloud server instances which are normally equipped with
state-of-the-art multi-core processors and a large amount
of memory. However, cloud computing relies on virtualiza-
tion technology which may introduce unknown performance
overhead to HPC applications. Some researchers have shown
that modern VM technology can deliver near-native perfor-
mance, e.g.,[29] shows that VM-based HPC system poses no
statistically significant overhead. As suspected by other re-
searchers [28][21][11], among other technical factors, (slower)
network connection is the primary source for HPC perfor-
mance degradation in Amazon EC2 cloud.

In this paper, in order to perform a quantitative and com-
parative case study, we adopt a suite of benchmarks used by
previous researchers, and deploy them to three public clouds.
We anticipate benchmarking results from clouds with differ-
ent settings will highlight the bottleneck of running HPC
applications in the cloud.

3. EXPERIMENTS

For each cloud computing platform, our experiment starts
with launching a server instance using Linux as a base OS
(64-bit if available), and install supporting software and li-
braries onto the base OS, e.g., MPICH2. We upload and
compile benchmarks and applications, and change applica-

tion and environment configurations accordingly, e.g., password-

less ssh access. We use the imaging tool supplied by the
platform to create a server image stored in the cloud. When
running benchmarks and applications, we launch multiple
server instances from the image to form a computing clus-
ter.

3.1 Benchmarks and Applications

3.1.1 NPB

NAS Parallel Benchmark (NPB) is designed by NASA /NAS
to evaluate the performance of parallel supercomputers. The
benchmark is derived from Computational Fluid Dynamics
(CFD) applications. NPB benchmarking in EC2 and NCSA
supercomputers has been reported in [28]. We choose to run
the same class benchmark (i.e., class=B) using NPB-3.3.

3.1.2 HPL

HPL (High Performance LINPACK) is a well-known TOP500
benchmark using a work load that is characteristic of some
scientific applications. HPL benchmarking in EC2 cloud has
been reported in [21]. Like [21], we implement HPL-2.0 [13]
using GotoBlas-1.10 [10]. We use hpl-calculator [14] to de-
termine benchmark parameters (i.e., N, NB, P and Q) to
best utilize system memory and maximize the use of threads
on each multi-core cloud server.

3.1.3 CSFV

In addition to above classical benchmarks, we choose to port
a full-size (with 110K lines of code) parallel computing ap-
plication into the cloud. Our work is in line with [6] effort

to run climate models in the cloud. We choose a NASA cli-
mate and numerical weather prediction application known
as Cubed-Sphere-Finite-Volume (CSFV) Dynamic Core [2].
CSFV is a MPI-based Fortran program compiled by Intel
Fortran compiler (ifort). At current numerical weather pre-
diction resolution 25km, the CSFV scales at an ideal rate
within a dedicated SGI Altix cluster of 512 CPUs. In our
experiment, for the sake of proof-of-concept, we choose 50km
resolution and set the length of simulation to 6 hours.

3.2 Public Clouds

We have investigated a few public cloud computing plat-
forms and selected three platforms for this paper, based on
both technical and economical reasons. Table 1, 2 and 3
show technical capabilities of selected platforms. In order
to maximize server performance and minimize the impact of
unpredictable processor sharing, on each cloud platform, we
choose the ‘highest’ possible server instance with maximum
number of cores denoted by (*). Table 4 shows theoreti-
cal peak performance (RPeak) per server instance on three
platforms.

Server instance RAM(GB) | Cores | Disk(GB) | Price/hr
Small 1.7 1 160 $0.085
Large 75 2 850 $0.34
Extra Large 15 1 1690 $0.68
Double Extra Large 34.2 1 850 $1.20
Quad Extra Large 68.4 B 1690 $2.40
High-CPU Medium 1.7 2 350 $0.17
High-CPU Bxtra Large* | 7 B 1690 $0.68

Table 1: EC2 Linux server specification and price

Server instance RAM(GB) Core Disk(GB) Price/hr
0.5G 0.5 1 30 $0.095
1G 1 1 60 $0.19
2G 2 1 120 $0.38
4G 4 3 240 $0.76
8G* 8 6 480 $1.52

Table 2: GoGrid Linux server specification and price

Server instance | RAM(GB) | Core | Disk(GB) | Price/hr
Small 1 2 8 N/A
Medium 1.8 1 18 N/A
Large™ 3.6 3 38 N/A

Table 3: IBM Linux server specification

Server CPU Hyper- | Processor/ | Core/ RPeak
(GHz) | visor node Processor | (GFLOPS)

BC2 2.33 Xeon 2 1 74.56

GoGrid | 3.00 Xen 1 6 72.00

TBM 2.03 7 2 I 93.76

Table 4: Cloud Server RPeak

3.2.1 Amazon EC2 Cloud[5]

Amazon EC2 is the most popular cloud computing platform,
and has been the target platform for numerous academic
and commercial applications. It uses dual-socket quad-core
Intel Xeon processors E5345@2.33GHz, which is 2-3 years
older compared to other two platforms in our test. Like
other researchers [28][21], we choose High-CPU-Extra-Large
instead of High-memory-Quad-Extra-Large with the same
number of cores.

3.2.2 GoGrid Cloud([9]

GoGrid sever uses Intel Xeon processors E5459@3GHz. We
suspect GoGrid uses high-end servers with 8-socket and quad-
core processors (up to 32 cores). However, due to its un-
specified server provisioning mechanism, not all cores are
made available for users’ requests. Unlike the other two 8-
core-per-node platforms, GoGrid decides to provide up-to
six-core-per-node. A server’s price is proportional to the
memory size (not to the number of processors).

3.2.3 IBM Cloud[15]

IBM is providing a cloud computing platform, currently
in beta and free. It uses Intel’s new Nehalem processor
X5570@2.93GHz. However, only 32-bit Linux OS is avail-
able at this writing.

3.2.4 Other Clouds

Other public cloud platforms offer similar or inferior IAAS
from technical and pricing perspectives, e.g., Rackspace (a.k.a.,
Mosso)[24] cloud server has two Quad-core operating at 2GHz,
but user can only access 4-core at a time. The documented
network throughput, depending on server instance, can be
slightly better than 100Mbps; Flexiscale [8] provides up to
4 cores per server but only 10Mbps network. We exclude
other ‘managed-hosting’ cloud platforms where user has to
reserve and pay for a server instance for at least a month,
because it does not provide an economic advantage of using
clouds for ‘ad-hoc’ computing tasks.

4. RESULT AND ANALYSIS

4.1 Single server instance performance

The objective here was to evaluate single cloud server in-
stance performance without inter-process communication over
the network. This focuses attention on the virtualization
overhead. Modern VM technology should allow user to achieve
near-native performance in the cloud, unless cloud suppliers
implement some resource management (e.g., processor shar-
ing) that affect the application negatively. We run NPB-
OMP (OpenMP-based shared-memory communication with
threads) on three cloud platforms and compare our results
with that of NCSA ‘Abe’ system as reported by [28]. We
find that the performance delivered by single cloud server
instance from all platforms is comparable to NCSA super-
computer as shown in Figure 1!, that means virtualization
technology does not add significant overhead to HPC per-
formance. IBM has overall the best performance because of
the use of the latest processor.

4.2 Cloud network

Unlike processor-type and memory-size, a cloud server’s net-
working capacity (throughput, latency, packet-loss-ratio, etc)
is not clearly specified on most public cloud platforms. Some
researchers have to take a ‘probing’ approach to understand
networking characteristics of cloud platforms, e.g., [11] pro-
vides some in-depth analysis for TCP/UDP/IP traffic profil-
ing in EC2. In this paper, our goal is to use simple ‘probing’
tools, at both IP and MPI messages level, to highlight net-
working differences among public clouds, which will help us

'We do not observe large variations across multiple runs of
the same benchmark suite. For the sake of clarity and com-
parison with others’ work, we choose to present the result
from one instance.

180
M NCSA-8core®2.33GHz
< 160
] 140 M gogrid-6core@3.00GHz
Q IBM-8core@2.93GHz
E 12 e
- M EC2-8core@2.33GHz
£ 100
2
s 80
o
2 60
w
= 40
=
2 20
0 -
BT CcG EP FT IS LU MG SP
NPB Benchmarks
Figure 1: NPB OMP on public clouds
350
300
° xxy XxX oy X
ﬂ)
& 20
=
z A
g 00 | 2 4
% m A, +A N A,
ks L ta+ ‘
g " & WAL Ay * @ NCSA
HE A
g et LR A P
@ 100
= X IBM
50 + GoGrid
, SRR RIS 209 00¢ o
0 200 400 600 800 1000 1200
MPI message size (bytes)

Figure 2: MPI message latency

to understand the network impact on running HPC applica-
tions in our case study. At TCP/IP level, we use iperf [17]
with TCP windows size of 16KB and obtain median TCP /TP
throughput on three platforms as shown in Table 5. Our
EC2’s measurement is similar to the result obtained by [11].
Therefore, we believe EC2 and GoGrid use 1Gbps and IBM
uses 100Mbps Ethernet. EC2 may implement some unspec-
ified resource or security management policy in its network,
and thus result in slower network performance. It is worth
noting that EC2 also has a unique network characteristics,
i.e., no two servers are guaranteed to be provisioned in the
same subnet, even though they are requested in a back-to-
back fashion. It normally takes 3-4 multi-hop for any IP
packet traveling between any EC2 server instances [6][11].
Both GoGrid and IBM simply put server instances in the
same subnet, confirmed by traceroute. At MPI message

Cloud EC2 | IBM | GoGrid
Bandwidth(Mbps) | 750 100 1000
Multi-hop Y N N

Table 5: Network characteristics probed by iperf and
traceroute

level, we use mpptest [20] tool to measure MPI message la-
tency and throughput among 32 MPI processes distributed
on multiple nodes. Similar results can be obtained by other
tools like IBM’s pingpong [16]. We choose mpptest to com-
pare our results with that of NCSA [28]. As shown in Figure

1.21E+08
AEC2 A
1.01E+08 Ty S
A
= X 1BM A +
2 3108407 A
:5;_ + GoGrid ws‘
2 6106407
[
=
£ s10e007
=
2.10E+07 |
1.00E+06
0 200 400 600 800 1000 1200
MPI message size (byte)
Figure 3: MPI message throughput
600
ENCSA
g 500 mEC2
2 GoGrid
E 00
L= mIBM
c
2 300
=1
=
9
£ 200
w
g 100
L
o . r r . -
BT-16 CG-32 EP-32 FT-32 1532 LU-32 MG32 SP-16
NPB benchmark - MPI processes

Figure 4: NPB-MPI benchmark results

2, the end-to-end delay of all clouds are 1-2 orders of magni-
tude worse than that of NCSA. The IBM cloud has the high-
est latency, mostly due to its slow networks. EC2 cloud has
the largest variation, that means application-level MPI mes-
sages share the same characteristics of network-level mes-
sages as reported by [11], which may lead to unpredictable
and undesirable behavior of MPI-based applications. Figure
3 shows MPI message throughput in three cloud platforms.
The GoGrid network outperforms other two clouds in terms
of average latency and variation.

4.3 MPI-based benchmarks and applications

4.3.1 NPB

We run NPB-MPI benchmark on three clouds and compare
our results with NCSA as shown in Figure 4. Comparatively
speaking, IBM cloud underperforms others although it has
the latest processor and the maximum number of cores per
node. This provides some insights on the fact that net-
working plays an important role in the MPI-based parallel
computing. Seemingly, GoGrid and EC2 deliver approxi-
mately the same performance. However, due to the special
requirement of NPB and GoGrid’s 6-core-per-node server,
in order to set up a cluster and assign 16/32 MPI processes
to 16/32 processors, we have to launch 3 GoGrid instances
(vs. 2 in EC2) and 6 instances (vs. 4 in EC2) respectively.
This means more inter-process communications are carried
out over the network in the GoGrid cluster. Therefore, it
is reasonable to anticipate better results from GoGrid if we
were able to use 8-core-per-node servers.

70.00 70.00%
—4—GFLOPS

R RP 5 - 60.00%

66.00
64.00 \\ N L 50.00%
62.00 /\(N L 40.00%
60.00 -

5,00 L 30.00%
56.00 ' ~u_ L 20.00%
54.00 \I\.‘—

- 10.00%
52.00

50.00 T T T T T 0.00%
0 1 2 3 4 5 6
of nodes in IBM cloud cluster

68.00

GFLOPS
RPeak%

Figure 5: HPL benchmark reulks in the IBM cloud

180.00 80.00%
160.00 LN /”’ - 70.00%
140.00 | 60.00%
120.00
- L 50.00% e
S 100.00 ﬁ
9 / - a000% @
i 80.00
[-
0,00 - 30.00%
1000 v ——GFLOPS | 50 .00%
20.00 =@=RPeak% | 10 00%
0.00 : : : : : 0.00%

5 6

1 2 3 4
of nodes in GoGrid cloud cluster

Figure 6: HPL benchmark results in the GoGrid
cloud

4.3.2 HPL

We ran HPL in the GoGrid and the IBM cloud and focus on
the overall FLOPS delivered by increasingly large clusters.
HPL benchmarking results on EC2 has been reported in [21]
Figure 1, which shows exponentially decreased performance
in terms of percentage of theoretical peak (RPeak%), i.e.,
the system does not scale out of a single box.

The HPL benchmarking results we obtained in the IBM
cloud is similar to that of EC2. As shown in Figure 5,
the system stops scaling up after 3 nodes join the cluster.
RPeak% decays nearly exponentially.

The HPL benchmarking results in GoGrid make us opti-
mistic about running HPC applications in the cloud. As
shown in Figure 6, when the cluster increases from 1 to 5,
the overall system FLOPS increase monotonically from 55
to 165 GFLOPS. RPeak% is still decaying, but in a nearly
linear fashion from 75% to 40%.

4.3.3 CSFV

CSFV can be decomposed to NxNx6 MPI processes. In
our experiment, we firstly choose N=2 and launch a small
cluster with 24 cores in three clouds. We also run oversub-
scribed cases, i.e., run 3x3x6 and 4x4x6 MPI processes in
the the same cluster. We compare the total execution time
with that from NASA dedicated HPC system. As shown
in Figure 7, IBM cloud performance does not scale satis-
factorily. GoGrid outperforms EC2 in all cases. Oversub-

500
_ 450 B
=]
3 400 ==NASA
g 0 =m=GoGrid
s 300
g EC2
g 250 IBM
o 200
1]
x
@ 150 =
£ 100 = - ——
Q

50

0 T

2x2x6 3x3x6 Axdx6
Processes

Figure 7: CSFV benchmark in public clouds vs. in
NASA system

600

500 16

400

16

300

200 4 32
16

100 -

Total execution time (sec)

BT SP LU

NPB-MPI Class-B Benchmarks

Figure 8: NPB-MPI benchmark results in the IBM
cloud

scription will improve GoGrid’s performance, and make it
underperform NASA system only by 10-20% while EC2 un-
derperforms NASA systems by 50+%.

4.4 Discussions
In this section, we discuss other technical and non-technical
factors that may affect HPC applications in the cloud.

4.4.1 Parallel programming paradigm

In previous sections, our case studies include pure MPI (via
distributed-memory communication) and pure OpenMP (via
shared-memory communication) implementations. In or-
der to overcome network problems posed by current pub-
lic clouds, one may consider combining these two parallel
programming paradigms. We use NPB-MZ benchmark to
demonstrate the effectiveness of using hybrid MPI+OpenMP
[19] to improve HPC application scalability in the cloud.
Firstly, we use the IBM-cloud (the one with the slowest net-
work) and NPB-MPI benchmark to show that a pure MPI
implementation does not scale up from a single server. We
chose BT, LU and SP benchmarks in order to compare with
results from hybrid approach. Due to the special require-
ments of NPB-MPI benchmarks, we choose 4, 9, 16 and
25 MPI processes for BT and SP, and 8, 16 and 32 MPI
processes for LU respectively. Figure 8 shows performance
starts degrading when the cluster size is larger than a sin-
gle node which can hold up to 8 MPI processes (without
oversubscription).

70

8x1

60

50

40

8x2 8X3

30

20

10 +

Total execution time(sec)

BT-MZ LU-MZ SP-MZ

NPB-MZ Class-B Benchmarks

Figure 9: NPB-MZ benchmark results in the IBM
cloud

T
S W
2 —
£
E’e 0.80
2
= —o—I1BM
E 0.60 -@-EC2
=l GoGrid
c
o 040
S
=
3
£
w 020

0.00

BT [€€) EP FT L MG N

NPB-OMP benchmarks

Figure 10: compiler difference

The hybrid OpenMP+MPI implementation uses two levels
of parallelization. OpenMP is applied to fine-grained intra-
zone parallelization and MPI is used for coarse-grained inter-
zone parallelization. NPB-MZ benchmarks (with the size
similar to NPB-MPI) scale out up to 3 nodes as shown in
Figure 9 where MPI is used between nodes and each MPI
task has 8 OpenMP threads.

4.4.2 Open source vs. commercial software

Software license issue has not been clearly defined in the
cloud. Free and Open Source Software (FOSS) are not only
extremely popular in scientific communities but also techni-
cally capable to support HPC applications, e.g., Linux as an
OS, gee/gfortran as compilers, OpenMPI/MPICH as run-
time libraries.

In order to understand the performance difference between
using FOSS vs. commercial software, we perform a case
study using GNU gfortran and Intel ifort compiler. We
choose NPB-OMP benchmark to minimize network impact
in our case study. We use ‘-opemp -O3’ option for ifort and
‘fopenmp -O3’ for gfortran respectively, and other compiler
options are out-of-box. We choose 32-bit CentOS-5 for IBM,
and 64-bit CentOS-5 for both GoGrid and EC2. From Fig-
ure 10, there is no significant performance difference using
commercial and FOSS compiler for all (Fortran) benchmarks
in all three clouds.

4.4.3 Cloud-friendly applications

Despite current deficiencies in public clouds, some types of
application can still benefit greatly from a large of number
of processors provisioned in the cloud, e.g., applications with
less inter-process communications like ‘Embarrassingly Par-
allel’ (EP) benchmark in Figure 1 and Figure 4 where little
or no performance degradation is observed. EP represents a
wide range of applications that demand more computation
but less communication capabilities, such as Monte Carlo
simulation. For these types of ‘cloud-friendly’ applications,
one can easily find cloud servers that have more memory
and newer processors than his/her in-house HPC systems,
and thus achieve better performance in the cloud.

4.4.4 Cloud computing economics

Unlike many dedicated HPC systems where FLOPS is the
goal and the only goal for optimization, cloud computing
can be formalized as a multi-objective optimization problem
under both technical and economic constraints. Many new
terminologies have been introduced from economics perspec-
tive, such as FLOPS per-dollar or per-watt [1][21]. While
the entire cloud computing economics topic is quite beyond
the scope of this paper, we do notice that, as far as HPC
is concerned, the system performance does not scale at the
same rate as the price rises. For example, we run NPB-
MPI benchmark using a GoGrid cluster that consists of the
same number of 1G and 4G servers. 4G cluster only out-
performs 1G cluster by 30%, but the price is quadrupled.
Some user may prefer a solution that is 30% slower but 4X
cheaper. Cloud computing platforms make it possible for
users to choose the most efficient computing resources suited
for their application and budget. One of its advantage (over
other on-demand computing like grid computing on VM) is
to make computation as a commodity, i.e., one can buy com-
putation like buying books online, and can have root access
to a large number of VMs instantly without installing special
software. It is best-suited for moderate-size computing tasks
arising from spontaneous and ad-hoc (research) projects.

S. RELATED WORK

In the past decade or so, numerous HPC benchmarks have
been studied extensively in either dedicated systems [4] [18]
or grid computing environments [26]. Recently, cloud com-
puting has attracted many researchers to re-run well-known
benchmarks in the cloud to evaluate its viability as an alter-
native HPC platform [27][25][28][21]. In contrast to results
of eariler related work which are mostly obtained from EC2
platform, our results from non-EC2 clouds are new. Actu-
ally, we find that EC2 is not an ideal platform to run HPC
applications due to its ‘unique’ networking characteristics
aforementioned. This, in part, explains some pessimistic
conclusions (for running HPC in the cloud) drawn by other
researchers.

HPC benchmarks used by this paper and other researchers
have relatively small and portable code base. There are few
literature reports on running special-purpose and production-
size application in the cloud. We have demonstrated that
cloud VMs are well-suited for porting large-size applications,
at both compilation- and run-time.

6. CONCLUSION AND FUTURE WORK

From our research, some clouds are performing better than
others, but we do not have a cloud worth recommending
for running serious HPC applications at this point, because
most of public clouds are optimized for running business
applications instead of HPC. However, once cloud vendors
consider HPC as in-scope, we believe they can make their
clouds more HPC-friendly, by making slight changes to their
existing infrastructure, e.g., GoGrid could open up eight or
more cores per-node; IBM could upgrade their network to
use commodity Gigabit NICs and switches, etc. New sci-
ence clouds platforms will be equipped with much better
processing and networking capabilities, e.g., DoE Magellan
cloud will use Infiniband [7], Penguin Computing’s HPC-As-
A-Service will use either GigE or Infiniband [12]. That said,
we see a promising trend for HP C-in-the-cloud.

Our cluster size for this preliminary study is ~10 nodes.
In the future, we would like to deploy HPC applications to
a cloud cluster with 100+ or even more nodes. Currently,
there some technical difficulties to scale HPC-in-the-cloud
to supercomputing size. For example, some vendor requests
special approval for user to launch 204 servers; other vendor
only provides limited number of IPs in a subnet; To deploy
an application to a larger cloud cluster, we also have to
automate our configuration process to deal with issues like
dynamic IP on each node. In the future, we would also like
to report our benchmarking results on other cloud platforms
when they become available, e.g., NASA’s Nebula. Most
research on HPC is conducted in dedicated systems. As
cloud computing gains wider acceptance, we anticipate some
research has to be revisited, considering new technical and
economical constraints imposed by cloud computing.

7. ACKNOWLEDGMENT

This work is supported in part by NASA SBIR contract
NNO09CD71P and NNX10CD82P. The authors would like to
thank IBM Systen Technology Group for partial support.

8. REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson,

A. Rabkin, and M. Zaharia. Above the clouds: A
berkeley view of cloud computing. Technical report,
UC Berkeley, 2009.

[2] Cubed-sphere finite-volume dynamic core(fvcore).
http://sivo.gsfc.nasa.gov/cubedsphere.html.

[3] J. B. Daniel Nurmi and R. Wolski. QBETS: Queue
bounds estimation from time series. In JSSPP, pages
76-101, 2007.

[4] J. J. Dongarra, P. Luszczek, and A. Petitet. The
LINPACK benchmark: past, present and future.
Concurrency and Computation Practice and
Ezxperience, 15(9):803.820, 2003.

[5] Amazon EC2 cloud. http://aws.amazon.com/ec2.
[6] C. Evangelinos and C. N. Hill. Cloud computing for
parallel scientific hpc applications: Feasibility of
running coupled atmosphere-ocean climate models on

amazon’s ec2. In Cloud Computing and Its
Applications, October 2008.

[7] M. Feldman. HPCwire: DOE labs to build science
clouds. http://www.hpcwire.com/specialfeatures/
cloud_computing/news/

12
[13]
[14]
[15]
[16]

(17]
(18]

(19]

(20]

(21]

22]
23]

[24]
25]

[26]

27]

(28]

29]

DOE-Labs-to-Build-Science-Clouds-64189872.
html.

Flexiscale cloud. http://www.flexiscale.com.
Gogrid cloud. http://www.gogrid. com.

Gotoblas.
http://wuw.tacc.utexas.edu/tacc-projects.

T. S. E. N. Guohui Wang. The impact of
virtualization on network performance of amazon ec2
data center. In INFOCOM, 2010.

Hpc as-a-service. http://www.penguincomputing.
com/POD/HPC_as_a_service.

High-performance LINPACK.
http://www.netlib.org/benchmark/hpl.
Hpl-caculator.
http://hpl-calculator.sourceforge.net.

IBM cloud.
https://www-949.ibm.com/cloud/developer/login.jsp.
IBM MPI benchmark.
http://www.intel.com/software/imb.

iperf. http://sourceforge.net/projects/iperf.

H. Jin, M. Frumkin, and J. Yan. The OpenMP
implementation of NAS parallel benchmarks and its
performance. NASA Ames Research Center,.
Technical Report NAS-99-011, 1999.

E. L. Lusk and A. Chan. Early experiments with the
openmp/mpi hybrid programming model. In IWOMP,
pages 36-47, 2008.

mpptest. http://www.mcs.anl.gov/research/
projects/mpi/mpptest/.

J. Napper and P. Bientinesi. Can cloud computing
reach the top5007 In UCHPC-MAW ’09: Proceedings
of the combined workshops on UnConventional high
performance computing workshop plus memory access
workshop, pages 17-20. ACM, 2009.

NASA NEBULA. http://nebula.nasa.gov.

NIST definition of cloud computing. http://csrc.
nist.gov/groups/SNS/cloud-computing/index.html.
Rackspace cloud. http://www.rackspacecloud.com.
J. Rehr, F. Vila, J. Gardner, L. Svec, and M. Prange.
Scientific computing in the cloud. Computing in
Science and Engineering, 99(1), 5555.

A. Snavely, G. Chun, H. Casanova, R. F. V. der
Wijngaart, and M. A. Frumkin. Benchmarks for grid
computing: a review of ongoing efforts and future
directions. SIGMETRICS Perform. Eval. Rev.,
30(4):27-32, 2003.

V. Stantchev. Performance evaluation of cloud
computing offerings. In 2009 Third International
Conference on Advanced Engineering Computing and
Applications in Sciences, page 187.192, 2009.

E. Walker. Benchmarking amazon ec2 for
high-performance scientific computing. ;LOGIN:,
33(5), 2008.

L. Youseff and et. al. Evaluating the performance
impact of xen on mpi and process execution for hpc
systems. In VTDC ’06: Proceedings of the 2nd
International Workshop on Virtualization Technology
in Distributed Computing, 2006.

