

Early Observations on the Performance of Windows Azure
Zach Hill, Jie Li, Ming Mao, Arkaitz Ruiz-Alvarez, and Marty Humphrey

Department of Computer Science
University of Virginia

Charlottesville, VA 22904

ABSTRACT

A significant open issue in cloud computing is performance. Few,

if any, cloud providers or technologies offer quantitative

performance guarantees. Regardless of the potential advantages of

the cloud in comparison to enterprise-deployed applications,

cloud infrastructures may ultimately fail if deployed applications

cannot predictably meet behavioral requirements. In this paper,

we present the results of comprehensive performance experiments

we conducted on Windows Azure from October 2009 to February

2010. In general, we have observed good performance of the

Windows Azure mechanisms, although the average 10 minute VM

startup time and the worst-case 2x slowdown for SQL Azure in

certain situations -relative to commodity hardware within the

enterprise- must be accounted for in application design. In

addition to a detailed performance evaluation of Windows Azure,

we provide recommendations for potential users of Windows

Azure based on these early observations. Although the discussion

and analysis is tailored to scientific applications, the results are

broadly applicable to the range of existing and future applications

running in Windows Azure.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and

Software – distributed systems, performance evaluation

(efficiency and effectiveness)

General Terms

Measurement, Performance, Experimentation.

Keywords

Cloud computing, scalability, cloud storage services, virtual

machines, Windows Azure.

1. INTRODUCTION
Cloud computing [2] has burst onto the high performance

computing scene in recent years and has established itself as a

viable alternative to customized HPC clusters for many users who

do not have the resources -- either time or money -- to build,

configure, and maintain a cluster of their own. The ability to pay

only for resources that are utilized and the apparent ease by which

resources can be expanded, deployed, and removed from service

are very attractive. Many eScience developers are increasingly

looking to create data-intensive applications that have highly

variable resource requirements over time and can take advantage

of the pay-as-you-go cost model.

As more cloud providers and technologies enter the market,

developers are faced with an increasingly difficult problem of

comparing various offerings and deciding which vendor to choose

for deploying an application. One critical step in the process of

evaluating various cloud offerings can be to determine the

performance of the services offered and how those match the

requirements of the application. Even in situations where other

factors ultimately dominate the choice regarding potential cloud

platforms -e.g., cost per unit time of a virtual machine or

application-hosting environment in the particular cloud-, it is

important to consider performance ramifications of design

decisions to ensure maximum value of cloud applications.

On February 1, 2010, Microsoft announced the commercial

availability of their cloud offering, the Windows Azure Platform

[13]. As evidenced by many of the presentations at Microsoft‘s

Professional Developers Conference –PDC-, Microsoft has made

a significant investment into Windows Azure to make it attractive

to the Information Technology community. This investment is

both the hardware/software necessary to run the Windows Azure

cloud and also enhancements into the Microsoft software

development tools -e.g., Visual Studio- to address the challenges

of writing, deploying, and managing a cloud application. While

the target audience of Windows Azure has understandably been

the broad business community, it is worth noting that on February

4, 2010, Microsoft and the National Science Foundation -NSF-

announced a partnership aimed at getting the science and

engineering community using Windows Azure.

The purpose of this paper is to provide a quantitative analysis of

the performance of the Windows Azure Platform. Through our

existing collaborative partnership with Microsoft Research, we

were able to evaluate the services at scales not readily available to

users of the early Community Technology Preview –CTP-

release—up to 192 concurrent instances. This partnership,

however, does not imply interior knowledge of the Azure

infrastructure, and throughout this paper our perspective is the

same as other users of the Azure platform. Our methodology is to

assume that Windows Azure has already been chosen as the target

cloud for whatever reason, and that now the developer is facing

the challenge of architecting his/her cloud application to

accommodate performance considerations. In other words, to

maintain a reasonable scope of this research effort -and this paper-

, we do not directly compare performance of Windows Azure to

other clouds. We plan to address this issue and provide this

detailed report in the near future.

The Windows Azure Platform is composed of three services:

Windows Azure, SQL Azure, and AppFabric. This paper focuses

on Windows Azure, which encompasses both compute resources

and scalable storage services, and SQL Azure, which provides

traditional SQL Server capabilities for databases up to 10GB in

size. We omit the Windows Azure platform AppFabric from

discussion as it is a newly released feature, which we have not had

time to evaluate properly.

Our evaluation of the Windows Azure service begins with the

performance of its compute resources and its three primary

storage services: Blobs, Queues, and Tables. Because these are

the basic storage components that scalable Windows Azure

applications are built upon, it is important to understand their

performance characteristics as scale increases. We do not present

an evaluation of Azure Drives, the NTFS storage abstraction

because it was just recently released into beta testing in February

2010. We then evaluate virtual machine instantiation time

because instance acquisition and release times are critical metrics

when evaluating the performance of dynamic scalability for

applications. We also present an evaluation of direct instance-to-

instance TCP performance as this mechanism provides an

alternative to the other storage services for communication

between instances that has lower latency. For the SQL Azure

service, we present the performance implications of running a

database server in the cloud, the influence of client location,

scalability in terms of the number of clients and availability over

time. We use the TPC-E benchmark, which is a database

benchmark defined by the Transaction Processing Council that

represents the operations of an OLTP system.

In general, we have observed good performance of the Windows

Azure mechanisms, although the average 10 minute VM startup

time and the worst-case 2x slowdown for SQL Azure in certain

situations -relative to commodity hardware within the enterprise-

must be accounted for in application design.

Finally, we summarize our experimental data into several specific

recommendations for developers using Windows Azure Platform.

In these recommendations we address virtual machine instances,

the storage services, SQL Azure and our experience in testing and

developing cloud applications. Although the discussion and

analysis is tailored to scientific applications, the results are

broadly applicable to the range of existing and future applications

running in Windows Azure.

The rest of this paper is organized as follows: Section 2 surveys

related work. We start our analysis of the Windows Azure storage

services in Section 3. We then proceed to discuss the results of

our experiments with the Azure computing services in Section 4.

Section 5 presents our results with SQL Azure. We discuss the

implication of our results for both users and cloud providers in

Section 6. Finally, we conclude with Section 7.

2. RELATED WORK
In the research community, there is an increasing recognition of

performance concerns of clouds and their underlying

technologies. For example, Menon et al. [12] and others [15]

evaluated the performance overhead of Xen [3], a software

virtualization technology which is a popular choice as the low

level virtual machine manager by several cloud providers. Xen

has been shown to impose negligible overheads in both micro an

macro benchmarks [17].

A higher level analysis is provided by Garfinkel [8], who

evaluates some of the cloud services that Amazon provides. Our

earlier work compared the performance of cloud platforms with

local HPC clusters for scientific applications [10]. Another report

examines the feasibility of using EC2 for HPC in comparison to

clusters at NCSA [16]. This comparison pits EC2 against high-

end clusters utilizing Infiniband interconnects.

There are also studies that focus on a specific scientific

application, such as DZero [14] or Montage [5], to evaluate the

possibility of migrating existing applications and data to the

cloud, based on performance and cost parameters. Workflows

[11] and service-oriented applications [6] have also been the

object of study. Another study reports on the possibility of

running coupled ocean-atmosphere simulations on EC2 [7].

The research reported in this article complements this earlier work

by providing a direct measurement of the mechanisms and APIs of

a specific cloud, Windows Azure.

3. AZURE STORAGE SERVICES
In this section we start our analysis with the performance tests of

all three Azure Storage Services: blob, table and queue. For each

service we measure maximum throughput in operations/sec or

MB/sec and the scalability of the service as a function of the

number of concurrent clients, among other service-related metrics.

For all our tests we use from 1 to 192 concurrent clients.

In general, the scalability of these storage services may be a

problem for large-scale applications with multiple concurrent

clients if the data is not adequately partitioned or replicated - all

of the storage services are automatically and transparently triple-

replicated. The performance penalty caused by increased

concurrency must be taken into account in order to meet the

application‘s requirements, and we provide several data points to

help the software developer make decisions about the

application‘s architecture and scale.

3.1 Blob

0

2

4

6

8

10

12

14

1 8 16 32 64 128 192

A
v
e
ra

g
e
 C

li
e
n

t
B

a
n

d
w

id
th

 (
M

B
/s

) Blob Download

Blob Upload

Figure 1: Average client blob download bandwidth as a

function of the number of concurrent clients

The Blob service in Windows Azure establishes a storage

hierarchy: storage accounts have multiple containers, which hold

one or more blobs. Each individual blob can store one terabyte of

data and some associated metadata. In this section we analyze the

performance of both the download and upload of data onto blobs.

For our blob download test we use a single 1GB blob that is

stored in Azure. Then, we start a number of worker roles -from 1

to 192- that download the same 1GB blob simultaneously from

the blob storage to their local storage. For the upload test, since

the different worker roles can‘t upload the data to the same blob

in Azure storage, a different test is used: the worker roles will

upload the same 1GB data to the same container in the blob

storage, using different blob name. We run the same test three

times each day. Although we have collected data for several days

at different times, the variation in performance is small and the

average bandwidth is quite stable across different times during the

day, or across different days.

The maximum server throughput for the blob download operation

was 393.4 MB/s, which was achieved by using 128 clients. For

the blob upload operation, the maximum throughput was 124.25

MB/sec, which was observed in our experiments with 192

concurrent clients.

Figure 1 shows the average client bandwidth as a function of the

number of concurrent clients attempting to download the same

blob. The bandwidth for 32 concurrent clients is half of the

bandwidth that a single client achieves. Using more concurrent

clients -up to 128- increases the total aggregate bandwidth,

although this comes with the price of much slower clients.

Figure 1 also shows the performance of the upload blob operation.

The scalability test results for the upload operation show similar

results to the download ones, as we can see the similarities

between both curves in the graph. However, because we are now

only uploading the 1GB file to the same container as different

blobs, we are not accessing the same blob object as in the

download operation. We conclude that the operations ―uploading

blobs to the same container‖ and ―downloading the same blob‖

both suffer from the same concurrency constraints.

The overall blob upload speed -including the baseline- is much

slower than the download speed. For example, average upload

speed is only ~0.65 MB/s for 192 VMs, and ~1.25MB/s for 64

VMs. This lower speed may be linked to the internal network

upload policies, but also to constraints on write operations. The

upload speed may be limited by the complexities involved in

infrastructure-level operations for creating new blob objects, such

as record generations, replication operations, etc.

3.2 Table
A table in Azure is a set of entities with properties, where each

property can have various types and the table has no defined

schema. In this sense, it is very different from a table in a

relational database. A single table has the capability to store a

large number –billions- of entities holding terabytes of data. We

have examined the performance of 4 operations from the Azure

Table API: Insert, Query, Update and Delete. We have run our

experiments with different entity sizes: 1 KB, 4 KB, 16 KB and

64 KB. We used from 1 to 192 concurrent clients to study the

scalability of each type of table operation. We have found that the

shape of the performance curves for different entity sizes are

similar, except for some exceptions which are noted below.

0

5

10

15

20

25

30

35

1 8 16 32 64 128 192

A
v

e
ra

g
e

 C
li

e
n

t
P

e
rf

o
rm

a
n

c
e

 (
o

p
e

ra
ti

o
n

s
/s

e
c

)

Insert Query

Update Delete

Figure 2: Average client Table performance as a function of

the number of concurrent clients. Entity size is 4 KB.

For each test case, our experiments performed the following steps:

we start with the Insert experiment using different number of

concurrent clients, where each client inserts 500 new entities into

the same table partition; after the Insert experiment, the table

partition includes ~220K same-size entities. Next, we perform

Query operations over the same partition by using a partition key

and row key, and each client queries the same entity 500 times.

Since currently Azure tables are indexed on PartitionKey and

RowKey only, this key-based query is the fastest query option.

Azure table also support query on table properties other than the

keys, but we didn‘t evaluate their performance here. For the

Update experiment, each concurrent client updates the same entity

in the partition and repeats the operation for 100 times. Here we

only tested with the unconditional updates option as it doesn‘t

enforce atomicity of each update request, so that different clients

can issue update requests to the same table entity at the same time.

Finally, in the Delete experiment, each client removes the same

500 entities it inserted in the first step of our experiment.

The result of our experiments is summarized in Figure 2 and

Table 1. Figure 2 presents the data from the point of view of the

client, that is, how many operations per second can concurrent

clients sustain? For both Insert and Query, the performance of the

clients decreases as we increase the level of concurrency.

However, we think that even with 192 concurrent clients we have

not hit the maximum server throughput for these two operations.

The Update and Delete tests show more drastic performance

declines as we increase the number of clients, though. These two

operations has high initial throughput with only 1 client, but then

slow down drastically as the number of concurrent clients

increases. The maximum throughput for these two services is

reached at 8 concurrent clients for the Update operation and 128

for the Delete operation.

Our experiments show that the performance curves for other entity

sizes are similar as Figure 2, except for the following exceptions

during the Insert and Delete tests: For the Insert test on 64 KB

entities with 192 concurrent clients, only 89 clients successfully

finished all 500 insert operations, and the other 103 client have

encountered timeout exceptions from the server. With 128

concurrent clients inserting 64KB entities, only 94 clients

successfully finished all 500 operations. This indicates that we

may hit the table service capability limit on the above two

combinations with large entity size and high concurrency. We

have also observed similar behaviors during the Delete tests.

Table 1 summarizes the observed maximum throughput for the

Table service for different entity sizes. The number in the

parentheses indicates the number of concurrent clients at which

point the maximum throughput is achieved. As we can see, Insert

is the most sensitive operation to the size of entities, whose effect

can be as high as 13 times less operations per second. On the

other hand, the throughput of Query operations is the least

sensitive to different entity sizes.

Table 1: Maximum observed Table throughput in ops/sec as a

function of entity size. The numbers in parentheses are the

number of concurrent clients

Operation 1 KB 4 KB 16 KB 64 KB

Insert 2237

(192)

1706

(192)

520

(128)

165

(128)

Query 1525

(192)

1011

(192)

1153

(192)

1139

(192)

Update 85

(16)

52

(8)

59

(8)

37

(16)

Delete 2227

(192)

1178

(128)

1281

(192)

622

(64)

Finally, we have run experiments that compare the performance of

the Table and Blob services. That is, for storing information that

does not need to be queried –so it could be stored as a blob- and

that does not exceed the table entity size limit –so it could be

stored in a table too-, we want to find out what is the best option

for the programmer. Table 2 answers this question. We run the

same experiment: 1, 8 and 16 concurrent clients performing

insertions of objects from 1 KB to 64 KB. We have used both a

blob container and a table as the backend storage system. The

results show that Blob is preferable if the amount of data to insert

is between 4 KB and 64 KB. The Blob performance can be as low

as a fourth of the Table performance for small objects of 1 KB: it

takes around 200 ms to create a new blob of 1 KB versus 40 to 70

ms to insert a 1 KB table entity. Depending on the number of

concurrent clients and the size of the data objects –if 4 KB or

greater- to be stored the performance of Blob is between 35% to 3

times faster than Table. Surprisingly, it takes between 40 to 60 ms

to insert a blob of 4 KB, which means that it is 5 times faster to

create a 4 KB blob than a 1 KB blob. Due to the black box nature

of the cloud services we do not have an explanation for this

behavior.

Table 2: Average client Blob insert performance in ops/sec

compared to Table insert performance

Clients 1 KB 4 KB 16 KB 64 KB

1 0.22x 1.35x 1.43x 1.44x

8 0.29x 2.05x 2.86x 2.60x

16 0.36x 2.13x 2.56x 2.79x

3.3 Queue
The main purpose of Queues in Windows Azure is to provide a

communication facility between web roles and worker roles. For

our queue test we use one queue that is shared among several

worker roles -from 1 to 192-. We examine the scalability of three

Queue operations: Add, Peek and Receive. For each operation we

run the test with different message sizes: 512 bytes, 1 KB, 4 KB

and 8 KB. As it was the case with Table, the shape of the

performance curves for each message size is similar and we

choose to show the results for 512 bytes.

0

5

10

15

20

25

30

35

40

45

1 2 4 8 16 32 64 128 192

A
v
e

ra
g

e
 c

li
e

n
t

p
e
rf

o
rm

a
n

c
e

 (
m

e
s

s
a

g
e
s

/s
e
c

)

Add

Peek

Receive

Figure 3: Average Queue client performance as a function of

the number of concurrent clients. Message size is 512 bytes.

Figure 3 shows our results. In general, the operations Add and

Receive display similar trends. Peek message is the fastest

operation, since it does not need to alter the visibility of the

message. Thus, the different replicas of the queue do not need to

be synchronized on a Peek operation and all of these requests can

be run in parallel. Add and Receive require a different

implementation, though. Both of these operations require

synchronization among distributed objects: the Add operation

needs to add the message to the same places in each replica of the

queue; the Receive operation needs to assign the triple-replicated

message to only one client.

Table 3 presents the maximum throughput of each operation

based on the size of the message. For the Add and Receive

operations, the maximum performance peaks at 64 concurrent

clients. For Peek, however, we present the throughput that was

achieved with 192 concurrent clients. We believe that we have not

exercised this operation on the Queue service to the maximum of

its capacity, albeit the throughput increase from 128 instances to

192 instances starts showing diminishing returns. Limitations on

the number of virtual machines that we can start on Windows

Azure prevent us from running this experiment at a higher scale.

Table 3: Maximum observed Queue throughput in ops/sec as a

function of on message size. The numbers in parentheses are

the number of concurrent clients

Operation 512 B 1 KB 4 KB 8 KB

Add

569

(64)

565

(64)

556

(128)

502

(64)

Peek

3878

(192)

3609

(192)

3388

(192)

3369

(192)

Receive

424

(64)

407

(64)

396

(64)

393

(64)

We have also run some experiments to test the influence of the

size of the queue on the performance of the mentioned operations.

We have found that there is not much variation at all as the queue

grows in size from 200 thousand to 2 million messages.

4. AZURE COMPUTING SERVICES
In this section, we discuss computing instance acquisition and

release time in Windows Azure and TCP communication between

different virtual machines instances.

4.1 Dynamic Scalability
We believe that computing instance acquisition time is a critical

metric to evaluate the efficiency of dynamic scalability for cloud

applications. We have written a test program that uses the

Windows Azure management API to collect timing information

about each possible action on Azure virtual machine instances.

We manage two types of Virtual Machines: web roles and worker

roles. In addition, Azure offers four types of VM size: small,

medium, large and extra large. By combining these two

parameters for each test case we create a new Azure cloud

deployment.

For every run of our test program, it randomly picks a role type

and a VM size, and creates a new deployment. We choose the

number of instances in each deployment based on the VM size: 4

instances for small, 2 for medium and one for large and extra

large. Then our test program measures the time spent in all five

phases – create, run, add, suspend and delete. These phases are

divided based on Azure deployment and instance status.

1. Create: in this phase, we record the wall clock time from

application deploy request initiation to the time when Azure

indicates the deployment is ready to use. In our test, all the

deployment packages are stored in Azure blob storage

services.

2. Run: when the deployment is successful, the test program

initiates a ―Run‖ request to start the VM instances in the

deployment. We measure the time from the start of the

request to the time when all VM instances are ready to use –

status changes from ―stopped‖ to ―ready‖.

3. Add: after the instances are started running, the test program

initiates a ―Change‖ request and doubles the number of

running instances. We measure the time that takes these

newly added instances to become ready –status changes

to‖ready‖.

4. Suspend: when all the VM instances are running, we suspend

all the running instances in the deployment and measure the

time spent to terminate each Azure VM instance - status

changes from ―ready‖ to ―stopped‖.

5. Delete: After all the running instances are suspended, our test

program initiates a ―Delete‖ request and removes the current

deployment.

Table 4: Worker role VM request time in seconds

Size Statistic Create Run Add Suspend Delete

Small AVG 86 533 1026 40 6

STD 27 36 355 30 5

Medium AVG 61 591 740 37 5

STD 10 42 176 12 3

Large AVG 54 660 774 35 6

STD 11 91 137 8 6

Extra

Large

AVG 51 790 N/A 42 6

STD 9 30 N/A 19 5

Table 5: Web role VM request time in seconds

Size Statistic Create Run Add Suspend Delete

Small AVG 86 594 1132 86 6

STD 17 32 478 14 2

Medium AVG 61 637 789 92 6

STD 10 77 181 17 6

Large AVG 52 679 670 94 5

STD 9 40 155 14 3

Extra

Large

AVG 55 827 N/A 96 6

STD 16 40 N/A 3 8

From Dec 17, 2009 to Jan 09 2010, we collected data from 431

successful runs. The VM startup failure rate, taking into account

all of our test cases, is 2.6%. Starting from Jan 1st 2010,

Windows Azure changed from CTP to commercial platform. Our

observations did not find clear performance differences between

these two periods. The output data is shown in Table 4 and Table

5. From these tables we draw the following observations:

1. Web role VM instances need longer time to startup than

worker role instances. For all VM sizes, web role takes 20 ~

60 seconds longer than Work role VMs. Such observation is

consistent with our expectation, since each web role requires

a more complex initialization than a worker role -e.g. IIS

support and Azure load balancer registration. Also, large

VMs take longer time to startup than small VMs.

2. The average time to start a worker role small instance is

around 9 min., while the average time to start a web role

instance is around 10 min. The quickest time we observe is

7.5 min. for worker role and 9 min. for web role. For 85% of

our test runs, the first small worker role instance becomes

ready within 9 min. and for 95%, the first small worker role

instance becomes ready within 10 min. For 80%, the first

small web role instance becomes ready within 10 min and for

90%, the first small web role instance becomes ready within

11 min.

3. Azure does not serve a request for multiple VMs at the same

time. That is, there is a lag between the time the first instance

becomes available and the following ones. For both worker

role and web role small instances, we have observed a 4 min.

lag between the 1st instance and the 4th instance of our

deployment.

4. Adding more instances to existing deployment takes much

longer than requesting the same number of instances at the

beginning.

5. Application deployment performance -create phase- is

largely a function of the application size. A 1.2MB

application starts 30 seconds faster than a 5 MB application.

Note that our test deployment is stored in Azure storage

service. If the application package is stored locally, the

deployment time could takes much longer because of the

local network bandwidth limit.

6. Azure shows consistent performance for deployment

deletion, around 6 seconds for all test cases.

4.2 TCP Communication
Windows Azure allows the programmer to define TCP or HTTP

internal endpoints for the virtual machine instances in the

deployment. This type of communication is highly coupled, works

only in a point to point fashion and the application needs to define

the protocol. However, it is a good complement to the Queue -low

coupling, multiple readers/writers, defined API- since these

internal ports allow the VMs to talk directly with each other using

a low-latency, high-bandwidth TCP/IP port. Therefore, we have

measured the performance of this feature of Azure VMs based on

three metrics: latency, bandwidth and bandwidth variability over

time.

In our first experimental setup, we create a deployment with 20

small VMs. 10 of these VMs measure latency, and the rest

measure bandwidth. Each virtual machine is paired with another

one; each pair contains one server and one client. In order to

measure the latency, the client measures the roundtrip time of 1

byte of information sent on the TCP channel, after communication

has been established. For the bandwidth measurement the client

sends 2 GB of information to the server –each run of this

bandwidth test usually takes around 30 seconds.

Figure 4 and Figure 5 presents our results. We have collected for

these two graphs a total of 10,000 measurements. Both figures

present the histogram of our samples. Figure 4 shows that

approximately 50% of the time the latency is equal to 1 ms; 75%

of the time the latency is 2 ms or better. In general, the most

common case is to find in the datacenter latency that is similar to

our LAN. Figure 5 summarizes the bandwidth measurements.

50% of the time we find the bandwidth to be 90 MB/s or better.

We assume that the physical hardware is Gigabit Ethernet, which

has a limit of 125 MB/s. So in our experiments we have seen that

is rather common for the VMs to have good bandwidth. However,

for the lower end of the sample -15%- the performance drops to

30 MB/s or worse.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100RTT ms

C
u

m
u

la
ti

v
e
 I
n

te
rR

o
le

 T
C

P
 L

a
te

n
c
y

Figure 4: Cumulative TCP latency –RTT ms- between two

small VMs communicating through TCP internal endpoints.

In our second experimental setup, we start a deployment with two

VMs, one client and one server. These two VMs transfer the same

2 GB of data, but they do that at regular intervals -every half hour-

for several days. We have plotted in Figure 6 our bandwidth

measurements in MB/s. For the most part the bandwidth exceeds

80 MB/s, but there are times in which it can be as low as 10MB/s.

Since we are using small instances, the resource manager will

most likely allocate other instances from other deployments in the

same physical hardware. We believe that the activity of these

other neighboring instances can greatly influence the bandwidth

observed by the application. Although the common case is still

similar to our LAN, developers are warned that the variability is

high. TCP is the feature in which we have observed the highest

degree of variability for the Windows Azure platform.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0102030405060708090100110MB/sec

C
u

m
u

la
ti

v
e
 I
n

te
rR

o
le

 T
C

P
 B

a
n

d
w

it
h

Figure 5: Cumulative TCP bandwidth –MB/sec- between two

small VMs sending 2 GB of data through TCP internal

endpoints.

0

10

20

30

40

50

60

70

80

90

100

Time

In
te

rR
o

le
 T

C
P

 B
a
n

d
w

id
th

 (
M

B
/s

)

Figure 6: Variation of the InterRole TCP Bandwidth

–MB/sec- between two small VMs.

5. SQL AZURE DATABASE
After an initial attempt to provide new data services models

designed to be scalable, but with limited functionality, the Azure

cloud platform started offering a full SQL product as an integral

part of their service. The widespread use of the relational model in

all kind of applications makes the SQL Azure Database a crucial

part of the cloud infrastructure. Essentially, this product is a

modified version of SQL Server that runs on the Azure platform

and is compatible with Microsoft‘s database protocol Transact-

SQL.

Similarly to other Azure products, SQL Azure focuses on high

availability, scalability, ease of deployment and automatic

management. In this section, we analyze these aspects together

with the performance of SQL Azure to offer a complete picture of

what this platform offers to new developers. Our test application

is the TPC-E benchmark, whose specification is published by the

Transaction Processing Council. The TPC-E benchmark simulates

an OLTP workload, and is designed to replace the old TPC-C

benchmark.

Our experimental setup is the following one: in the Azure cloud

we have deployed a SQL Azure server with our 3 GB TPC-E

database and we deploy up to 8 extra large instances -with eight

cores and 8GB or RAM each- to function as TPC-E clients.

Locally, we have a Windows Server 2008 in a quad core with 8

GB of RAM running SQL Server 2008, and 3 TPC-E client

machines -dual cores- connected by a LAN.

5.1 Single Thread Client Performance
Graphs in Figure 7 show the performance comparison of the

different SQL servers with clients that run in the same machine -

Local client to local server-, across a LAN -Local client to server

in LAN- and across the datacenter -Azure client to Azure server-.

The TPC-E client runs a single thread of execution for four hours,

including a ramp-up period of 30 minutes. The TPC-E benchmark

consists of 10 different transactions, each of them consists of

different SQL queries that include selections, updates, inserts and

deletes across the 33 tables that compose the TPC-E database. We

measure the time it takes to complete the transaction from the

client side and show the average of each type of transaction -

including a 95% confidence interval on the population mean as

the error bar- and the general average, labeled as TPC-E.

0

0.1

0.2

0.3

0.4

Bro
ke

rV
ol
um

e

C
us

to
m

er
P
os

iti
on

M
ar

ke
tF

ee
d

M
ar

ke
tW

at
ch

Sec
ur

ity
D
et

ai
l

Tra
de

Lo
ok

up

Tra
de

O
rd

er

Tra
de

R
es

ul
t

Tra
de

Sta
tu

s

Tra
de

U
pd

at
e

TPC
E

A
v
e

ra
g

e
 T

ra
n

s
a

c
ti

o
n

 T
im

e
 (

S
e

c
o

n
d

s
)

Local client to local server
Local client to server in LAN
Azure client to Azure server

Figure 7: TPC-E transaction times in seconds for each client

and server location.

There is, on average, almost a 2x difference in speed when we

compare an Azure VM client querying a SQL Azure database

with a local client querying a SQL Server across our LAN. The

slowdown for ―Local client to local server‖ is caused by SQL

Server taking too many resources, which slowdowns the client. If

the user wishes to locate the Azure VM client outside the cloud -

mobile clients, saving costs, collaboration across multiple sites,

etc. - we have observed that there is an order of magnitude of

slowdown -not included in this graph-. This additional overhead

is caused by latency of communications between our client in

Virginia and the Azure server in the Southern United States

datacenter.

This graph shows that, based on performance, a local deployment

is preferable than a purely cloud deployment. In the next sections,

however, we will discuss other aspects that developers should take

into account.

5.2 Scalability
In order to evaluate the scalability of both local and Azure SQL

servers, we start several TPC-E clients that query a single server at

the same time. We examine two cases, the first one being several

Azure VMs running clients against Azure SQL Database -up to

64- and the second one includes several clients -up to 6- querying

our local SQL Server 2008 across the LAN. We compare the

average transaction time for each client thread running

concurrently with several others with the single thread client

performance. Our first result is Figure 9. The graph shows that the

Azure Database does not take such a big performance hit as the

local one. 6 concurrent local clients achieve a similar slowdown

as 40 cloud clients. In this case, the cloud service performs better

than our local SQL Server when we scale the number of

concurrent clients.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 6 8 16 20 30 40 50

Azure Server

LAN Server

T
ra

n
s
a

c
ti
o

n
 C

o
m

m
it
te

d
 p

e
r

C
lie

n
t

T
h

re
a
d

 (
n

o
rm

a
liz

e
d
)

Figure 8: Transactions successfully executed as a function of

the number of concurrent TPC-E clients.

We can also notice that the slowdown plateaus around 50 clients

in the cloud. This does not indicate that the scalability is

unlimited, since we are taking into account for this graph only the

transactions that successfully commit. Thus, for a high number of

threads trying to access the database concurrently, both SQL

Azure Database and SQL Server 2008 start rejecting the incoming

connections to the database. We present some data related to this

phenomenon in Figure 8. Here we present, for each thread, the

75%

100%

125%

150%

175%

200%

225%

1 2 4 6 8 16 20 30 40 50 64

Azure Server

LAN Server

A
v
e
ra

g
e
 T

ra
n

s
a
c
ti

o
n

 T
im

e
 (

n
o

rm
a
li
z
e
d

)

Figure 9: Average Transaction slowdown as a function of the

number of concurrent clients.

 Figure X.

normalized number of transactions that successfully commit. For

example, each of the 64 concurrent cloud clients commits 17% of

the transactions that 1 single client commits in the same time

interval. Thus, the amount of work done is equivalent to 11 ideal

concurrent clients -64 * 17% = 1088%-. Again, the local server

performs worse than the cloud server in this metric too, where 6

concurrent local clients show the same performance degradation

as 20 to 30 concurrent cloud clients.

With these results in hand, one may argue that such performance

degradation even at a relatively low number of clients -64-

invalidates the scalability promises of the cloud. We should factor

into account that every application that relies on a central server is

going to hit a limit. Furthermore, for complex OLTP such as the

TPCE benchmark this limit is going to be lower, as we have seen.

The system designer should take those limits into account, and

design the application and databases accordingly. For example,

we could have had partitioned our database into different

databases, so several servers would share the load. Data partition

is completely application dependent, though, so it falls outside the

scope of our analysis.

5.3 Availability
One of the central promises of the SQL Azure Database is high

availability. It is a common claim that the automatic management

and replication of the database server in Azure is a superior

alternative to a local in-house solution. We can automatically

deploy new instances of databases in the cloud in a matter of

seconds, which do not require setups, patches or update

downtimes. Although these instances are available, there are no

claims about the performance of the database server over time.

Thus, we have scheduled a modified TPC-E client which runs

locally and queries the SQL Azure Database for 20 minutes every

hour. This client has been modified to be completely

deterministic, because in such a short amount of time the

probabilistic nature of the TPC-E benchmark distorts the results.

Thus, we perform the exact same read only queries every hour.

Figure 10 and Figure 11 summarize the results over several

weeks: we started a TPCE client on our LAN -Figure 11- on

November 25th, 2009 that run till January 23rd, 2010; we also

started a TPCE client on a worker Role in Windows Azure -

Figure 10- on December 18th, 2009 which run till January 31st,

2010.

0

0.1

0.2

1 49 97 145 193 241 289 337 385 433 481 529 577 625 673 721 769 817 865

A
v

e
ra

g
e

 T
ra

n
s

a
c

ti
o

n
 T

im
e

 (
S

e
c

o
n

d
s

)

CustomerPosition MarketWatch SecurityDetail
TradeLookup TradeOrder TradeResult
TradeStatus TradeUpdate

Figure 10: Performance of each TPC-E transaction over time

in seconds, where the TPCE client runs in Azure.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 97 193 289 385 481 577 673 769 865 961 1057 1153 1249

A
v

e
ra

g
e

 T
ra

n
s

a
c

ti
o

n
 T

im
e

 (
S

e
c

o
n

d
s

)

CustomerPosition MarketWatch SecurityDetail
TradeLookup TradeOrder TradeResult
TradeStatus TradeUpdate

Figure 11: Performance of each TPC-E transaction over time

in seconds, where the TPCE client runs in our LAN.

The results are, in general, stable. There are, however, some

spikes in the graph that represent instances in which SQL Azure

Database has been slower than usual to respond to our client,

although these peaks are rather unusual. Also, our client in

Windows Azure failed to contact the database server, and for

several days the Azure fabric was unable to recycle it correctly.

This period of time can be seen in Figure 10 between the 260 -

December 29th - and 330 data points. Manual redeployment of the

TPCE client fixed this error, but the developers are advised to

monitor continuously the health of each instance running in

Azure, even if it is apparently running correctly –i.e., generating

output blobs-.

6. RECOMMENDATIONS
In this section, we present our recommendation for developers

and users of the Windows Azure cloud. These recommendations

are based upon our experimental results and our experience

developing scientific applications for Windows Azure.

6.1 Azure Storage Services
In order to improve performance users should choose a blob

storage hierarchy so that accesses to the blobs are spread into as

many storage partitions as possible. The data transfer throughput

is sensitive to the number of concurrent accesses to a single

partition. For example, with 32 clients concurrently accessing the

blobs -no prefix used in the blob names- under the same

container, the per-client data transfer rate can be degraded as

much as 50% of that when only a single client is accessing the

blobs.

The blob storage download bandwidth, when accessed from small

instance types, is limited by the client's bandwidth for small

numbers of concurrent clients -1 to 8-; we saw a 100Mbit/s -

~13MB/s- limitation. We have observed a per-client bandwidth

drop of approx 1.5MB/s when we doubled the number of

concurrent clients. The maximum service-side bandwidth

achievable against a single blob for a high number of concurrent

clients is limited to approximately 400MB/s -just about what we

would expect from three 1Gb/s links if a blob is triple-replicated-.

Therefore, we recommend using some extra data caching

mechanisms on the worker role level to expand the per-client

bandwidth limit, and creating data replications on the blob storage

to expand the server-side bandwidth limit.

In order to get the best performance out of the Table service, the

table entities should be accessed by using partition keys and row

keys only. Particularly, users should avoid querying tables using

property filters under performance-critical or large concurrency

circumstances. Currently, all tables are indexed on the

PartitionKey and RowKey properties of each entity, but creating

an index on any other properties cannot be specified. Under high

concurrency circumstances, situations become even worse. In one

of our experiments, over a half of the 32 concurrent clients got

time-out exceptions instead of correct results when querying the

same table partition -with ~220000 entities pre-populated- using

property filters.

Table storage is not the same as a relational database and

schemas/designs that work well in an RDBMS are typically not

efficient in the Table Storage architecture. Replicating data

between tables rather than doing a ‗join‘ type operation in the

client is often preferable as it minimizes calls to the Table Service.

Queues can be used for storage of many small objects as long as

an approximate FIFO model is sufficient. We have not observed

that queue performance for a single client is dependent on queue

size -- we found consistent Add, Peek, and Receive operation

performance from queues ranging in size from 200K messages to

2M messages.

Multiple queues should be used for supporting many concurrent

readers/writers as we found that performance degraded as

concurrent readers and/or writers were added, but each client

obtained on average more than 10 operations per second for

message sizes of 512 bytes to 8 KB for up to 32 writers. With 16

or fewer writers each client obtained 15-20 ops/sec. We also

found that message retrieval was more affected by concurrency

than message put operations so users cannot assume similar scale

at each end of the queue.

6.2 Dynamic Scaling
Dynamically adding VMs to a deployment at runtime is a useful

feature of Azure enabling dynamic load matching, but you should

be aware that it often takes on the order of 10 minutes from the

time of the request until the instance is integrated into the

deployment. If fast scaling out is important, hot-standbys may be

required if a 10 minute delay is not acceptable, although this

option would incur a higher economic cost. Additionally, web

roles took, on average, 60 seconds longer to come up for small

instance types, and about 30 seconds longer for medium to extra

large instance sizes.

6.3 Azure SQL Services
Users should expect a single Azure-based client accessing SQL

Azure to take about twice as long as a single local-enterprise

client accessing SQL Server within the enterprise -commodity

hardware. Therefore, if speed is a chief concern and the number of

concurrent clients is expected to be small, a local deployment -

with local clients- will obtain the better performance. The opaque

and potentially changing nature of the Cloud prevents us from

determining exactly why there was a 2X slowdown.

We found that the throughput of a single large database instance -

10GB max size- peaks at 30 concurrent clients running

continuous transactions tested using OLTP-style TCPE database

benchmark. The corresponding peak was seen at 6 concurrent

clients in our LAN testing. In that case we experience 50%

transaction failure and the average transaction completion time,

for those that did complete, was 65% longer than that of a single

client. For 8 concurrent clients we found a reasonable 15%

transaction completion time increase. Use these numbers and the

graphs presented in Section 5 as a general guide to concurrency

limits in SQL Azure.

We did, however, find that performance over time was consistent,

although there are rare occasions -less than 1.6% occurrence for

50% slowdown or worse, 0.3% for 2x slowdown or worse- where

performance degraded significantly. Therefore, we have seen no

reason to provision assuming a worst-case behavior in SQL Azure

that is significantly worse than average-case behavior.

6.4 Testing & Development
Development on the Azure Development Fabric & Development

Storage should be approached with realistic expectations. The

Azure Development Fabric & Development Storage provides the

ability to test connectivity and functional correctness of your own

code, but only under limited concurrency. Additionally, the

behavior of some SDK components may not match the

deployment environment. One example is the load balancing

algorithm: the Development Fabric appears to load-balance based

on each instance‘s outstanding requests and does round-robin on

equivalently loaded instances. In the full deployment environment

the load balancer appears to utilize random scheduling amongst

web role instances. Differences like these can make debugging

deployed applications difficult if users assume the same behavior

as seen in the smaller-scale local SDK environment.

7. CONCLUSION
In this paper we have presented the results from experiments we

have conducted on Windows Azure. We have shown an

exhaustive performance evaluation of each of the integral parts of

the platform: virtual machines, storage services – table, blob and

queue- and SQL services. Based on these experiments, we also

provide our performance-related recommendations for users of the

Windows Azure platform.

These cloud services are the building blocks for cloud

applications, and are usually presented to the user as a black box,

with no performance guarantees. Our main focus is to provide the

community with performance information and concrete

recommendations that help the design and development of

scalable cloud applications.

8. REFERENCES
[1] Amazon. Amazon Elastic Compute Cloud (EC2).

http://aws.amazon.com/ec2/

[2] Armbrust, M. and Fox, A. and Griffith, R. and Joseph, A.D.

and Katz, R.H. and Konwinski, A. and Lee, G. and Patterson,

D.A. and Rabkin, A. and Stoica, I. and others. Above the

clouds: A Berkeley view of cloud computing. EECS

Department, University of California, Berkeley, Tech. Rep.

UCB/EECS-2009-28.

[3] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,

Ho, A., Neugebauer, R., Pratt, I., and Warfield, A. 2003. Xen

and the art of virtualization. In Proceedings of the Nineteenth

ACM Symposium on Operating Systems Principles (Bolton

Landing, NY, USA, October 19 - 22, 2003). SOSP '03.

ACM, New York, NY, 164-177. DOI=

http://doi.acm.org/10.1145/945445.945462

[4] Buyya, R., Chee Shin Yeo, Srikumar Venugopal, James

Broberg, Ivona Brandic, Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering computing

as the 5th utility, Future Generation Computer Systems,

Volume 25, Issue 6, June 2009, Pages 599-616, ISSN 0167-

739X, DOI: 10.1016/j.future.2008.12.001.

[5] Deelman, E., Singh, G., Livny, M., Berriman, B., and Good,

J. 2008. The cost of doing science on the cloud: the Montage

example. In Proceedings of the 2008 ACM/IEEE Conference

on Supercomputing (Austin, Texas, November 15 - 21,

2008). Conference on High Performance Networking and

Computing. IEEE Press, Piscataway, NJ, 1-12.

[6] Dejun, J. and Pierre, G. and Chi, C.H. 2009. EC2

Performance Analysis for Resource Provisioning of Service-

Oriented Applications. In The 3rd Workshop on Non-

Functional Properties and SLA Management in Service-

Oriented Computing (Stockholm, Sweden, November 23,

2009)

[7] Evangelinos, C. and Hill, C. N. Cloud Computing for

Parallel Scientific HPC Applications: Feasibility of Running

Coupled Atmosphere-Ocean Climate Models on Amazon‘s

EC2. In Proceedings of Cloud Computing and Its

Applications (Chicago, USA, October 22-23, 2008).

CCA‘08.

[8] Garfinkel, S. L. 2007. An evaluation of Amazon‘s grid

computing services: EC2, S3 and SQS. Center for Research

on Computation and Society School for Engineering and

Applied Sciences, Harvard University, Tech. Rep., 2007

[9] Google. Google App Engine.

http://code.google.com/appengine/

[10] Hill, Z. and Humphrey, M. 2009. A Quantitative Analysis of

High Performance Computing with Amazon‘s EC2

Infrastructure. In Proceedings of the 10th IEEE/ACM

International Conference on GridComputing (Banff, Canada,

October 13-15 2009). Grid 2009.

[11] C. Hoffa, G. Mehta, T. Freeman, E. Deelman et al. 2008. On

the Use of Cloud Computing for Scientific Workflows. IEEE

Fourth International Conference on eScience (Indiana, USA,

December 10 – 12, 2008). eScience 2008.

[12] Menon, A., Santos, J. R., Turner, Y., Janakiraman, G. and

Zwaenepoel, W. 2005. Diagnosing performance overheads in

the Xen virtual machine environment. In Proceedings of the

1st ACM/USENIX international Conference on Virtual

Execution Environments (Chicago, IL, USA, June 11 - 12,

2005). VEE '05. ACM, New York, NY, 13-23. DOI=

http://doi.acm.org/10.1145/1064979.1064984

[13] Microsoft. Windows Azure Platform.

http://www.microsoft.com/azure/default.mspx

[14] Palankar, M. R., Iamnitchi, A., Ripeanu, M., and Garfinkel,

S. 2008. Amazon S3 for science grids: a viable solution? In

Proceedings of the 2008 international Workshop on Data-

Aware Distributed Computing (Boston, MA, USA, June 24 -

24, 2008). DADC '08. ACM, New York, NY, 55-64. DOI=

http://doi.acm.org/10.1145/1383519.1383526

[15] Ranadive, A., Kesavan, M., Gavrilovska, A., and Schwan, K.

2008. Performance implications of virtualizing multicore

cluster machines. In Proceedings of the 2nd Workshop on

System-Level Virtualization For High Performance

Computing (Glasgow, Scotland, March 31 - 31, 2008).

HPCVirt '08. ACM, New York, NY, 1-8. DOI=

http://doi.acm.org/10.1145/1435452.1435453

[16] Walker, E. Benchmarking Amazon EC2 for High-

Performance Scientific Computing. ;Login: The Usenix

Magazine, Vol. 33, No. 5., 2008

[17] Youseff, L., Wolski, R., Gorda, B., and, Krintz C. Evaluating

the Performance Impact of Xen on MPI and Process

Execution in HPC Systems. In Proceedings of the 2nd

International Workshop on Virtualization Technology in

Distributed Computing (VTDC 2006)

