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ABSTRACT 

A significant open issue in cloud computing is performance. Few, 

if any, cloud providers or technologies offer quantitative 

performance guarantees. Regardless of the potential advantages of 

the cloud in comparison to enterprise-deployed applications, 

cloud infrastructures may ultimately fail if deployed applications 

cannot predictably meet behavioral requirements. In this paper, 

we present the results of comprehensive performance experiments 

we conducted on Windows Azure from October 2009 to February 

2010. In general, we have observed good performance of the 

Windows Azure mechanisms, although the average 10 minute VM 

startup time and the worst-case 2x slowdown for SQL Azure in 

certain situations -relative to commodity hardware within the 

enterprise- must be accounted for in application design. In 

addition to a detailed performance evaluation of Windows Azure, 

we provide recommendations for potential users of Windows 

Azure based on these early observations. Although the discussion 

and analysis is tailored to scientific applications, the results are 

broadly applicable to the range of existing and future applications 

running in Windows Azure.   

Categories and Subject Descriptors 

H.3.4 [Information Storage and Retrieval]: Systems and 

Software – distributed systems, performance evaluation 

(efficiency and effectiveness)  

General Terms 

Measurement, Performance, Experimentation. 

Keywords 

Cloud computing, scalability, cloud storage services, virtual 

machines, Windows Azure.  

1. INTRODUCTION 
Cloud computing [2] has burst onto the high performance 

computing scene in recent years and has established itself as a 

viable alternative to customized HPC clusters for many users who 

do not have the resources -- either time or money -- to build, 

configure, and maintain a cluster of their own.  The ability to pay 

only for resources that are utilized and the apparent ease by which 

resources can be expanded, deployed, and removed from service 

are very attractive. Many eScience developers are increasingly 

looking to create data-intensive applications that have highly 

variable resource requirements over time and can take advantage 

of the pay-as-you-go cost model.  

As more cloud providers and technologies enter the market, 

developers are faced with an increasingly difficult problem of 

comparing various offerings and deciding which vendor to choose 

for deploying an application.  One critical step in the process of 

evaluating various cloud offerings can be to determine the 

performance of the services offered and how those match the 

requirements of the application.  Even in situations where other 

factors ultimately dominate the choice regarding potential cloud 

platforms -e.g., cost per unit time of a virtual machine or 

application-hosting environment in the particular cloud-, it is 

important to consider performance ramifications of design 

decisions to ensure maximum value of cloud applications. 

On February 1, 2010, Microsoft announced the commercial 

availability of their cloud offering, the Windows Azure Platform 

[13]. As evidenced by many of the presentations at Microsoft‘s 

Professional Developers Conference –PDC-, Microsoft has made 

a significant investment into Windows Azure to make it attractive 

to the Information Technology community. This investment is 

both the hardware/software necessary to run the Windows Azure 

cloud and also enhancements into the Microsoft software 

development tools -e.g., Visual Studio- to address the challenges 

of writing, deploying, and managing a cloud application. While 

the target audience of Windows Azure has understandably been 

the broad business community, it is worth noting that on February 

4, 2010, Microsoft and the National Science Foundation -NSF- 

announced a partnership aimed at getting the science and 

engineering community using Windows Azure.  

The purpose of this paper is to provide a quantitative analysis of 

the performance of the Windows Azure Platform. Through our 

existing collaborative partnership with Microsoft Research, we 

were able to evaluate the services at scales not readily available to 

users of the early Community Technology Preview –CTP- 

release—up to 192 concurrent instances. This partnership, 

however, does not imply interior knowledge of the Azure 

infrastructure, and throughout this paper our perspective is the 

same as other users of the Azure platform. Our methodology is to 

assume that Windows Azure has already been chosen as the target 

cloud for whatever reason, and that now the developer is facing 

the challenge of architecting his/her cloud application to 

accommodate performance considerations. In other words, to 

maintain a reasonable scope of this research effort -and this paper-

, we do not directly compare performance of Windows Azure to 

other clouds. We plan to address this issue and provide this 

detailed report in the near future. 

 



 

 

The Windows Azure Platform is composed of three services: 

Windows Azure, SQL Azure, and AppFabric.  This paper focuses 

on Windows Azure, which encompasses both compute resources 

and scalable storage services, and SQL Azure, which provides 

traditional SQL Server capabilities for databases up to 10GB in 

size.  We omit the Windows Azure platform AppFabric from 

discussion as it is a newly released feature, which we have not had 

time to evaluate properly. 

Our evaluation of the Windows Azure service begins with the 

performance of its compute resources and its three primary 

storage services: Blobs, Queues, and Tables.  Because these are 

the basic storage components that scalable Windows Azure 

applications are built upon, it is important to understand their 

performance characteristics as scale increases.  We do not present 

an evaluation of Azure Drives, the NTFS storage abstraction 

because it was just recently released into beta testing in February 

2010.  We then evaluate virtual machine instantiation time 

because instance acquisition and release times are critical metrics 

when evaluating the performance of dynamic scalability for 

applications.  We also present an evaluation of direct instance-to-

instance TCP performance as this mechanism provides an 

alternative to the other storage services for communication 

between instances that has lower latency. For the SQL Azure 

service, we present the performance implications of running a 

database server in the cloud, the influence of client location, 

scalability in terms of the number of clients and availability over 

time. We use the TPC-E benchmark, which is a database 

benchmark defined by the Transaction Processing Council that 

represents the operations of an OLTP system.  

In general, we have observed good performance of the Windows 

Azure mechanisms, although the average 10 minute VM startup 

time and the worst-case 2x slowdown for SQL Azure in certain 

situations -relative to commodity hardware within the enterprise- 

must be accounted for in application design. 

Finally, we summarize our experimental data into several specific 

recommendations for developers using Windows Azure Platform. 

In these recommendations we address virtual machine instances, 

the storage services, SQL Azure and our experience in testing and 

developing cloud applications. Although the discussion and 

analysis is tailored to scientific applications, the results are 

broadly applicable to the range of existing and future applications 

running in Windows Azure.   

The rest of this paper is organized as follows: Section 2 surveys 

related work. We start our analysis of the Windows Azure storage 

services in Section 3. We then proceed to discuss the results of 

our experiments with the Azure computing services in Section 4. 

Section 5 presents our results with SQL Azure. We discuss the 

implication of our results for both users and cloud providers in 

Section 6. Finally, we conclude with Section 7. 

2. RELATED WORK 
In the research community, there is an increasing recognition of 

performance concerns of clouds and their underlying 

technologies. For example, Menon et al. [12] and others [15] 

evaluated the performance overhead of Xen [3], a software 

virtualization technology which is a popular choice as the low 

level virtual machine manager by several cloud providers. Xen 

has been shown to impose negligible overheads in both micro an 

macro benchmarks [17]. 

A higher level analysis is provided by Garfinkel [8], who 

evaluates some of the cloud services that Amazon provides. Our 

earlier work compared the performance of cloud platforms with 

local HPC clusters for scientific applications [10]. Another report 

examines the feasibility of using EC2 for HPC in comparison to 

clusters at NCSA [16].  This comparison pits EC2 against high-

end clusters utilizing Infiniband interconnects.  

There are also studies that focus on a specific scientific 

application, such as DZero [14] or Montage [5], to evaluate the 

possibility of migrating existing applications and data to the 

cloud, based on performance and cost parameters. Workflows 

[11] and service-oriented applications [6] have also been the 

object of study.  Another study reports on the possibility of 

running coupled ocean-atmosphere simulations on EC2 [7]. 

The research reported in this article complements this earlier work 

by providing a direct measurement of the mechanisms and APIs of 

a specific cloud, Windows Azure.  

3. AZURE STORAGE SERVICES 
In this section we start our analysis with the performance tests of 

all three Azure Storage Services: blob, table and queue. For each 

service we measure maximum throughput in operations/sec or 

MB/sec and the scalability of the service as a function of the 

number of concurrent clients, among other service-related metrics. 

For all our tests we use from 1 to 192 concurrent clients.  

In general, the scalability of these storage services may be a 

problem for large-scale applications with multiple concurrent 

clients if the data is not adequately partitioned or replicated - all 

of the storage services are automatically and transparently triple-

replicated. The performance penalty caused by increased 

concurrency must be taken into account in order to meet the 

application‘s requirements, and we provide several data points to 

help the software developer make decisions about the 

application‘s architecture and scale. 

3.1 Blob 
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Figure 1: Average client blob download bandwidth as a 

function of the number of concurrent clients 

The Blob service in Windows Azure establishes a storage 

hierarchy: storage accounts have multiple containers, which hold 



 

 

one or more blobs. Each individual blob can store one terabyte of 

data and some associated metadata. In this section we analyze the 

performance of both the download and upload of data onto blobs. 

For our blob download test we use a single 1GB blob that is 

stored in Azure. Then, we start a number of worker roles -from 1 

to 192- that download the same 1GB blob simultaneously from 

the blob storage to their local storage. For the upload test, since 

the different worker roles can‘t upload the data to the same blob 

in Azure storage, a different test is used: the worker roles will 

upload the same 1GB data to the same container in the blob 

storage, using different blob name. We run the same test three 

times each day. Although we have collected data for several days 

at different times, the variation in performance is small and the 

average bandwidth is quite stable across different times during the 

day, or across different days. 

The maximum server throughput for the blob download operation 

was 393.4 MB/s, which was achieved by using 128 clients. For 

the blob upload operation, the maximum throughput was 124.25 

MB/sec, which was observed in our experiments with 192 

concurrent clients. 

Figure 1 shows the average client bandwidth as a function of the 

number of concurrent clients attempting to download the same 

blob. The bandwidth for 32 concurrent clients is half of the 

bandwidth that a single client achieves. Using more concurrent 

clients -up to 128- increases the total aggregate bandwidth, 

although this comes with the price of much slower clients.  

Figure 1 also shows the performance of the upload blob operation. 

The scalability test results for the upload operation show similar 

results to the download ones, as we can see the similarities 

between both curves in the graph. However, because we are now 

only uploading the 1GB file to the same container as different 

blobs, we are not accessing the same blob object as in the 

download operation. We conclude that the operations ―uploading 

blobs to the same container‖ and ―downloading the same blob‖ 

both suffer from the same concurrency constraints. 

The overall blob upload speed -including the baseline- is much 

slower than the download speed. For example, average upload 

speed is only ~0.65 MB/s for 192 VMs, and ~1.25MB/s for 64 

VMs. This lower speed may be linked to the internal network 

upload policies, but also to constraints on write operations. The 

upload speed may be limited by the complexities involved in 

infrastructure-level operations for creating new blob objects, such 

as record generations, replication operations, etc.  

3.2 Table 
A table in Azure is a set of entities with properties, where each 

property can have various types and the table has no defined 

schema. In this sense, it is very different from a table in a 

relational database. A single table has the capability to store a 

large number –billions- of entities holding terabytes of data. We 

have examined the performance of 4 operations from the Azure 

Table API: Insert, Query, Update and Delete. We have run our 

experiments with different entity sizes: 1 KB, 4 KB, 16 KB and 

64 KB. We used from 1 to 192 concurrent clients to study the 

scalability of each type of table operation. We have found that the 

shape of the performance curves for different entity sizes are 

similar, except for some exceptions which are noted below. 

0

5

10

15

20

25

30

35

1 8 16 32 64 128 192

A
v

e
ra

g
e

 C
li

e
n

t 
P

e
rf

o
rm

a
n

c
e

 (
o

p
e

ra
ti

o
n

s
/s

e
c

)

Insert Query

Update Delete

 
Figure 2: Average client Table performance as a function of 

the number of concurrent clients. Entity size is 4 KB. 

For each test case, our experiments performed the following steps: 

we start with the Insert experiment using different number of 

concurrent clients, where each client inserts 500 new entities into 

the same table partition; after the Insert experiment, the table 

partition includes ~220K same-size entities. Next, we perform 

Query operations over the same partition by using a partition key 

and row key, and each client queries the same entity 500 times. 

Since currently Azure tables are indexed on PartitionKey and 

RowKey only, this key-based query is the fastest query option. 

Azure table also support query on table properties other than the 

keys, but we didn‘t evaluate their performance here. For the 

Update experiment, each concurrent client updates the same entity 

in the partition and repeats the operation for 100 times. Here we 

only tested with the unconditional updates option as it doesn‘t 

enforce atomicity of each update request, so that different clients 

can issue update requests to the same table entity at the same time. 

Finally, in the Delete experiment, each client removes the same 

500 entities it inserted in the first step of our experiment. 

The result of our experiments is summarized in  Figure 2 and 

Table 1.  Figure 2 presents the data from the point of view of the 

client, that is, how many operations per second can concurrent 

clients sustain? For both Insert and Query, the performance of the 

clients decreases as we increase the level of concurrency. 

However, we think that even with 192 concurrent clients we have 

not hit the maximum server throughput for these two operations.  

The Update and Delete tests show more drastic performance 

declines as we increase the number of clients, though. These two 

operations has high initial throughput with only 1 client, but then 

slow down drastically as the number of concurrent clients 

increases. The maximum throughput for these two services is 

reached at 8 concurrent clients for the Update operation and 128 

for the Delete operation.  

Our experiments show that the performance curves for other entity 

sizes are similar as Figure 2, except for the following exceptions 

during the Insert and Delete tests: For the Insert test on 64 KB 

entities with 192 concurrent clients, only 89 clients successfully 

finished all 500 insert operations, and the other 103 client have 

encountered timeout exceptions from the server. With 128 

concurrent clients inserting 64KB entities, only 94 clients 

successfully finished all 500 operations. This indicates that we 

may hit the table service capability limit on the above two 



 

 

combinations with large entity size and high concurrency. We 

have also observed similar behaviors during the Delete tests.    

Table 1 summarizes the observed maximum throughput for the 

Table service for different entity sizes. The number in the 

parentheses indicates the number of concurrent clients at which 

point the maximum throughput is achieved. As we can see, Insert 

is the most sensitive operation to the size of entities, whose effect 

can be as high as 13 times less operations per second. On the 

other hand, the throughput of Query operations is the least 

sensitive to different entity sizes.  

Table 1: Maximum observed Table throughput in ops/sec as a 

function of entity size. The numbers in parentheses are the 

number of concurrent clients 

Operation 1 KB 4 KB 16 KB 64 KB 

Insert 2237 

(192) 

1706 

(192) 

520   

(128) 

165 

(128) 

Query 1525 

(192) 

1011 

(192) 

1153 

(192) 

1139 

(192) 

Update 85   

(16) 

52         

(8) 

59         

(8) 

37     

(16) 

Delete 2227 

(192) 

1178 

(128) 

1281 

(192) 

622  

(64) 

 

Finally, we have run experiments that compare the performance of 

the Table and Blob services. That is, for storing information that 

does not need to be queried –so it could be stored as a blob- and 

that does not exceed the table entity size limit –so it could be 

stored in a table too-, we want to find out what is the best option 

for the programmer. Table 2 answers this question. We run the 

same experiment: 1, 8 and 16 concurrent clients performing 

insertions of objects from 1 KB to 64 KB. We have used both a 

blob container and a table as the backend storage system. The 

results show that Blob is preferable if the amount of data to insert 

is between 4 KB and 64 KB. The Blob performance can be as low 

as a fourth of the Table performance for small objects of 1 KB: it 

takes around 200 ms to create a new blob of 1 KB versus 40 to 70 

ms to insert a 1 KB table entity. Depending on the number of 

concurrent clients and the size of the data objects –if 4 KB or 

greater- to be stored the performance of Blob is between 35% to 3 

times faster than Table. Surprisingly, it takes between 40 to 60 ms 

to insert a blob of 4 KB, which means that it is 5 times faster to 

create a 4 KB blob than a 1 KB blob. Due to the black box nature 

of the cloud services we do not have an explanation for this 

behavior.  

Table 2: Average client Blob insert performance in ops/sec 

compared to Table insert performance 

# Clients 1 KB 4 KB 16 KB 64 KB 

1 0.22x 1.35x 1.43x 1.44x 

8 0.29x 2.05x 2.86x 2.60x 

16 0.36x 2.13x 2.56x 2.79x 

 

3.3 Queue 
The main purpose of Queues in Windows Azure is to provide a 

communication facility between web roles and worker roles. For 

our queue test we use one queue that is shared among several 

worker roles -from 1 to 192-. We examine the scalability of three 

Queue operations: Add, Peek and Receive. For each operation we 

run the test with different message sizes: 512 bytes, 1 KB, 4 KB 

and 8 KB. As it was the case with Table, the shape of the 

performance curves for each message size is similar and we 

choose to show the results for 512 bytes. 
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Figure 3: Average Queue client performance as a function of 

the number of concurrent clients. Message size is 512 bytes. 

Figure 3 shows our results. In general, the operations Add and 

Receive display similar trends. Peek message is the fastest 

operation, since it does not need to alter the visibility of the 

message. Thus, the different replicas of the queue do not need to 

be synchronized on a Peek operation and all of these requests can 

be run in parallel. Add and Receive require a different 

implementation, though. Both of these operations require 

synchronization among distributed objects: the Add operation 

needs to add the message to the same places in each replica of the 

queue; the Receive operation needs to assign the triple-replicated 

message to only one client. 

Table 3 presents the maximum throughput of each operation 

based on the size of the message. For the Add and Receive 

operations, the maximum performance peaks at 64 concurrent 

clients. For Peek, however, we present the throughput that was 

achieved with 192 concurrent clients. We believe that we have not 

exercised this operation on the Queue service to the maximum of 

its capacity, albeit the throughput increase from 128 instances to 

192 instances starts showing diminishing returns. Limitations on 

the number of virtual machines that we can start on Windows 

Azure prevent us from running this experiment at a higher scale. 

Table 3: Maximum observed Queue throughput in ops/sec as a 

function of on message size. The numbers in parentheses are 

the number of concurrent clients 

Operation 512 B 1 KB 4 KB 8 KB 

Add 

 

569 

(64) 

565 

(64) 

556 

(128) 

502 

(64) 

Peek 

 

3878 

(192) 

3609 

(192) 

3388 

(192) 

3369 

(192) 

Receive 

 

424 

(64) 

407 

(64) 

396 

(64) 

393 

(64) 

 

We have also run some experiments to test the influence of the 

size of the queue on the performance of the mentioned operations. 

We have found that there is not much variation at all as the queue 

grows in size from 200 thousand to 2 million messages.  



 

 

4. AZURE COMPUTING SERVICES 
In this section, we discuss computing instance acquisition and 

release time in Windows Azure and TCP communication between 

different virtual machines instances.  

4.1 Dynamic Scalability 
We believe that computing instance acquisition time is a critical 

metric to evaluate the efficiency of dynamic scalability for cloud 

applications. We have written a test program that uses the 

Windows Azure management API to collect timing information 

about each possible action on Azure virtual machine instances. 

We manage two types of Virtual Machines: web roles and worker 

roles. In addition, Azure offers four types of VM size: small, 

medium, large and extra large. By combining these two 

parameters for each test case we create a new Azure cloud 

deployment. 

For every run of our test program, it randomly picks a role type 

and a VM size, and creates a new deployment. We choose the 

number of instances in each deployment based on the VM size: 4 

instances for small, 2 for medium and one for large and extra 

large. Then our test program measures the time spent in all five 

phases – create, run, add, suspend and delete. These phases are 

divided based on Azure deployment and instance status. 

1. Create: in this phase, we record the wall clock time from 

application deploy request initiation to the time when Azure 

indicates the deployment is ready to use. In our test, all the 

deployment packages are stored in Azure blob storage 

services.  

2. Run: when the deployment is successful, the test program 

initiates a ―Run‖ request to start the VM instances in the 

deployment. We measure the time from the start of the 

request to the time when all VM instances are ready to use –

status changes from ―stopped‖ to ―ready‖. 

3. Add: after the instances are started running, the test program 

initiates a ―Change‖ request and doubles the number of 

running instances. We measure the time that takes these 

newly added instances to become ready –status changes 

to‖ready‖.  

4. Suspend: when all the VM instances are running, we suspend 

all the running instances in the deployment and measure the 

time spent to terminate each Azure VM instance - status 

changes from ―ready‖ to ―stopped‖. 

5. Delete: After all the running instances are suspended, our test 

program initiates a ―Delete‖ request and removes the current 

deployment. 

 

Table 4: Worker role VM request time in seconds 

Size Statistic Create Run Add Suspend Delete 

Small AVG 86 533 1026 40 6 

STD 27 36 355 30 5 

Medium AVG 61 591 740 37 5 

STD 10 42 176 12 3 

Large AVG 54 660 774 35 6 

STD 11 91 137 8 6 

Extra 

Large 

AVG 51 790 N/A 42 6 

STD 9 30 N/A 19 5 

 

Table 5: Web role VM request time in seconds 

Size Statistic Create Run Add Suspend Delete 

Small AVG 86 594 1132 86 6 

STD 17 32 478 14 2 

Medium AVG 61 637 789 92 6 

STD 10 77 181 17 6 

Large AVG 52 679 670 94 5 

STD 9 40 155 14 3 

Extra 

Large 

AVG 55 827 N/A 96 6 

STD 16 40 N/A 3 8 

 

From Dec 17, 2009 to Jan 09 2010, we collected data from 431 

successful runs. The VM startup failure rate, taking into account 

all of our test cases, is 2.6%.  Starting from Jan 1st 2010, 

Windows Azure changed from CTP to commercial platform. Our 

observations did not find clear performance differences between 

these two periods. The output data is shown in Table 4 and Table 

5. From these tables we draw the following observations: 

1. Web role VM instances need longer time to startup than 

worker role instances. For all VM sizes, web role takes 20 ~ 

60 seconds longer than Work role VMs. Such observation is 

consistent with our expectation, since each web role requires 

a more complex initialization than a worker role -e.g. IIS 

support and Azure load balancer registration. Also, large 

VMs take longer time to startup than small VMs. 

2. The average time to start a worker role small instance is 

around 9 min., while the average time to start a web role 

instance is around 10 min. The quickest time we observe is 

7.5 min. for worker role and 9 min. for web role. For 85% of 

our test runs, the first small worker role instance becomes 

ready within 9 min. and for 95%, the first small worker role 

instance becomes ready within 10 min. For 80%, the first 

small web role instance becomes ready within 10 min and for 

90%, the first small web role instance becomes ready within 

11 min. 

3. Azure does not serve a request for multiple VMs at the same 

time. That is, there is a lag between the time the first instance 

becomes available and the following ones. For both worker 

role and web role small instances, we have observed a 4 min. 

lag between the 1st instance and the 4th instance of our 

deployment.  

4. Adding more instances to existing deployment takes much 

longer than requesting the same number of instances at the 

beginning.  

5. Application deployment performance -create phase- is 

largely a function of the application size. A 1.2MB 

application starts 30 seconds faster than a 5 MB application. 

Note that our test deployment is stored in Azure storage 

service. If the application package is stored locally, the 

deployment time could takes much longer because of the 

local network bandwidth limit.  

6. Azure shows consistent performance for deployment 

deletion, around 6 seconds for all test cases. 

4.2 TCP Communication 
Windows Azure allows the programmer to define TCP or HTTP 

internal endpoints for the virtual machine instances in the 

deployment. This type of communication is highly coupled, works 

only in a point to point fashion and the application needs to define 

the protocol. However, it is a good complement to the Queue -low 



 

 

coupling, multiple readers/writers, defined API- since these 

internal ports allow the VMs to talk directly with each other using 

a low-latency, high-bandwidth TCP/IP port. Therefore, we have 

measured the performance of this feature of Azure VMs based on 

three metrics: latency, bandwidth and bandwidth variability over 

time. 

In our first experimental setup, we create a deployment with 20 

small VMs. 10 of these VMs measure latency, and the rest 

measure bandwidth. Each virtual machine is paired with another 

one; each pair contains one server and one client. In order to 

measure the latency, the client measures the roundtrip time of 1 

byte of information sent on the TCP channel, after communication 

has been established. For the bandwidth measurement the client 

sends 2 GB of information to the server –each run of this 

bandwidth test usually takes around 30 seconds.  

Figure 4 and Figure 5 presents our results. We have collected for 

these two graphs a total of 10,000 measurements. Both figures 

present the histogram of our samples. Figure 4 shows that 

approximately 50% of the time the latency is equal to 1 ms; 75% 

of the time the latency is 2 ms or better. In general, the most 

common case is to find in the datacenter latency that is similar to 

our LAN. Figure 5 summarizes the bandwidth measurements. 

50% of the time we find the bandwidth to be 90 MB/s or better. 

We assume that the physical hardware is Gigabit Ethernet, which 

has a limit of 125 MB/s. So in our experiments we have seen that 

is rather common for the VMs to have good bandwidth. However, 

for the lower end of the sample -15%- the performance drops to 

30 MB/s or worse. 
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Figure 4: Cumulative TCP latency –RTT ms- between two 

small VMs communicating through TCP internal endpoints. 

In our second experimental setup, we start a deployment with two 

VMs, one client and one server. These two VMs transfer the same 

2 GB of data, but they do that at regular intervals -every half hour- 

for several days. We have plotted in Figure 6 our bandwidth 

measurements in MB/s. For the most part the bandwidth exceeds 

80 MB/s, but there are times in which it can be as low as 10MB/s. 

Since we are using small instances, the resource manager will 

most likely allocate other instances from other deployments in the 

same physical hardware. We believe that the activity of these 

other neighboring instances can greatly influence the bandwidth 

observed by the application. Although the common case is still 

similar to our LAN, developers are warned that the variability is 

high. TCP is the feature in which we have observed the highest 

degree of variability for the Windows Azure platform. 
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Figure 5: Cumulative TCP bandwidth –MB/sec- between two 

small VMs sending 2 GB of data through TCP internal 

endpoints. 
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Figure 6: Variation of the InterRole TCP Bandwidth               

–MB/sec- between two small VMs. 

5. SQL AZURE DATABASE 
After an initial attempt to provide new data services models 

designed to be scalable, but with limited functionality, the Azure 

cloud platform started offering a full SQL product as an integral 

part of their service. The widespread use of the relational model in 

all kind of applications makes the SQL Azure Database a crucial 

part of the cloud infrastructure. Essentially, this product is a 

modified version of SQL Server that runs on the Azure platform 

and is compatible with Microsoft‘s database protocol Transact-

SQL. 

Similarly to other Azure products, SQL Azure focuses on high 

availability, scalability, ease of deployment and automatic 

management. In this section, we analyze these aspects together 

with the performance of SQL Azure to offer a complete picture of 

what this platform offers to new developers. Our test application 

is the TPC-E benchmark, whose specification is published by the 

Transaction Processing Council. The TPC-E benchmark simulates 

an OLTP workload, and is designed to replace the old TPC-C 

benchmark. 



 

 

Our experimental setup is the following one: in the Azure cloud 

we have deployed a SQL Azure server with our 3 GB TPC-E 

database and we deploy up to 8 extra large instances -with eight 

cores and 8GB or RAM each- to function as TPC-E clients. 

Locally, we have a Windows Server 2008 in a quad core with 8 

GB of RAM running SQL Server 2008, and 3 TPC-E client 

machines -dual cores- connected by a LAN. 

5.1 Single Thread Client Performance 
Graphs in Figure 7 show the performance comparison of the 

different SQL servers with clients that run in the same machine -

Local client to local server-, across a LAN -Local client to server 

in LAN- and across the datacenter -Azure client to Azure server-. 

The TPC-E client runs a single thread of execution for four hours, 

including a ramp-up period of 30 minutes. The TPC-E benchmark 

consists of 10 different transactions, each of them consists of 

different SQL queries that include selections, updates, inserts and 

deletes across the 33 tables that compose the TPC-E database. We 

measure the time it takes to complete the transaction from the 

client side and show the average of each type of transaction -

including a 95% confidence interval on the population mean as 

the error bar- and the general average, labeled as TPC-E.  
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Figure 7: TPC-E transaction times in seconds for each client 

and server location. 

There is, on average, almost a 2x difference in speed when we 

compare an Azure VM client querying a SQL Azure database 

with a local client querying a SQL Server across our LAN. The 

slowdown for ―Local client to local server‖ is caused by SQL 

Server taking too many resources, which slowdowns the client. If 

the user wishes to locate the Azure VM client outside the cloud -

mobile clients, saving costs, collaboration across multiple sites, 

etc. - we have observed that there is an order of magnitude of 

slowdown -not included in this graph-. This additional overhead 

is caused by latency of communications between our client in 

Virginia and the Azure server in the Southern United States 

datacenter.  

This graph shows that, based on performance, a local deployment 

is preferable than a purely cloud deployment. In the next sections, 

however, we will discuss other aspects that developers should take 

into account. 

5.2 Scalability 
In order to evaluate the scalability of both local and Azure SQL 

servers, we start several TPC-E clients that query a single server at 

the same time. We examine two cases, the first one being several 

Azure VMs running clients against Azure SQL Database -up to 

64- and the second one includes several clients -up to 6- querying 

our local SQL Server 2008 across the LAN. We compare the 

average transaction time for each client thread running 

concurrently with several others with the single thread client 

performance. Our first result is Figure 9. The graph shows that the 

Azure Database does not take such a big performance hit as the 

local one. 6 concurrent local clients achieve a similar slowdown 

as 40 cloud clients. In this case, the cloud service performs better 

than our local SQL Server when we scale the number of 

concurrent clients.  
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Figure 8: Transactions successfully executed as a function of 

the number of concurrent TPC-E clients. 

 

We can also notice that the slowdown plateaus around 50 clients 

in the cloud. This does not indicate that the scalability is 

unlimited, since we are taking into account for this graph only the 

transactions that successfully commit. Thus, for a high number of 

threads trying to access the database concurrently, both SQL 

Azure Database and SQL Server 2008 start rejecting the incoming 

connections to the database. We present some data related to this 

phenomenon in Figure 8. Here we present, for each thread, the 
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Figure 9: Average Transaction slowdown as a function of the 

number of concurrent clients. 

 Figure X.  

 



 

 

normalized number of transactions that successfully commit. For 

example, each of the 64 concurrent cloud clients commits 17% of 

the transactions that 1 single client commits in the same time 

interval. Thus, the amount of work done is equivalent to 11 ideal 

concurrent clients -64 * 17% = 1088%-. Again, the local server 

performs worse than the cloud server in this metric too, where 6 

concurrent local clients show the same performance degradation 

as 20 to 30 concurrent cloud clients. 

With these results in hand, one may argue that such performance 

degradation even at a relatively low number of clients -64- 

invalidates the scalability promises of the cloud. We should factor 

into account that every application that relies on a central server is 

going to hit a limit. Furthermore, for complex OLTP such as the 

TPCE benchmark this limit is going to be lower, as we have seen. 

The system designer should take those limits into account, and 

design the application and databases accordingly. For example, 

we could have had partitioned our database into different 

databases, so several servers would share the load. Data partition 

is completely application dependent, though, so it falls outside the 

scope of our analysis. 

5.3 Availability 
One of the central promises of the SQL Azure Database is high 

availability. It is a common claim that the automatic management 

and replication of the database server in Azure is a superior 

alternative to a local in-house solution. We can automatically 

deploy new instances of databases in the cloud in a matter of 

seconds, which do not require setups, patches or update 

downtimes. Although these instances are available, there are no 

claims about the performance of the database server over time. 

Thus, we have scheduled a modified TPC-E client which runs 

locally and queries the SQL Azure Database for 20 minutes every 

hour. This client has been modified to be completely 

deterministic, because in such a short amount of time the 

probabilistic nature of the TPC-E benchmark distorts the results. 

Thus, we perform the exact same read only queries every hour. 

Figure 10 and Figure 11 summarize the results over several 

weeks: we started a TPCE client on our LAN -Figure 11- on 

November 25th, 2009 that run till January 23rd, 2010; we also 

started a TPCE client on a worker Role in Windows Azure -

Figure 10- on December 18th, 2009 which run till January 31st, 

2010.  
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Figure 10: Performance of each TPC-E transaction over time 

in seconds, where the TPCE client runs in Azure. 
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Figure 11: Performance of each TPC-E transaction over time 

in seconds, where the TPCE client runs in our LAN. 

The results are, in general, stable. There are, however, some 

spikes in the graph that represent instances in which SQL Azure 

Database has been slower than usual to respond to our client, 

although these peaks are rather unusual. Also, our client in 

Windows Azure failed to contact the database server, and for 

several days the Azure fabric was unable to recycle it correctly. 

This period of time can be seen in Figure 10 between the 260 - 

December 29th - and 330 data points. Manual redeployment of the 

TPCE client fixed this error, but the developers are advised to 

monitor continuously the health of each instance running in 

Azure, even if it is apparently running correctly –i.e., generating 

output blobs-. 

6. RECOMMENDATIONS 
In this section, we present our recommendation for developers 

and users of the Windows Azure cloud. These recommendations 

are based upon our experimental results and our experience 

developing scientific applications for Windows Azure. 

6.1 Azure Storage Services 
In order to improve performance users should choose a blob 

storage hierarchy so that accesses to the blobs are spread into as 

many storage partitions as possible. The data transfer throughput 

is sensitive to the number of concurrent accesses to a single 

partition. For example, with 32 clients concurrently accessing the 

blobs -no prefix used in the blob names- under the same 

container, the per-client data transfer rate can be degraded as 

much as 50% of that when only a single client is accessing the 

blobs. 

The blob storage download bandwidth, when accessed from small 

instance types, is limited by the client's bandwidth for small 

numbers of concurrent clients -1 to 8-; we saw a 100Mbit/s -

~13MB/s- limitation. We have observed a per-client bandwidth 

drop of approx 1.5MB/s when we doubled the number of 

concurrent clients. The maximum service-side bandwidth 

achievable against a single blob for a high number of concurrent 

clients is limited to approximately 400MB/s -just about what we 

would expect from three 1Gb/s links if a blob is triple-replicated-. 

Therefore, we recommend using some extra data caching 

mechanisms on the worker role level to expand the per-client 



 

 

bandwidth limit, and creating data replications on the blob storage 

to expand the server-side bandwidth limit. 

In order to get the best performance out of the Table service, the 

table entities should be accessed by using partition keys and row 

keys only. Particularly, users should avoid querying tables using 

property filters under performance-critical or large concurrency 

circumstances. Currently, all tables are indexed on the 

PartitionKey and RowKey properties of each entity, but creating 

an index on any other properties cannot be specified. Under high 

concurrency circumstances, situations become even worse. In one 

of our experiments, over a half of the 32 concurrent clients got 

time-out exceptions instead of correct results when querying the 

same table partition -with ~220000 entities pre-populated- using 

property filters. 

Table storage is not the same as a relational database and 

schemas/designs that work well in an RDBMS are typically not 

efficient in the Table Storage architecture. Replicating data 

between tables rather than doing a ‗join‘ type operation in the 

client is often preferable as it minimizes calls to the Table Service. 

Queues can be used for storage of many small objects as long as 

an approximate FIFO model is sufficient. We have not observed 

that queue performance for a single client is dependent on queue 

size -- we found consistent Add, Peek, and Receive operation 

performance from queues ranging in size from 200K messages to 

2M messages. 

Multiple queues should be used for supporting many concurrent 

readers/writers as we found that performance degraded as 

concurrent readers and/or writers were added, but each client 

obtained on average more than 10 operations per second for 

message sizes of 512 bytes to 8 KB for up to 32 writers. With 16 

or fewer writers each client obtained 15-20 ops/sec. We also 

found that message retrieval was more affected by concurrency 

than message put operations so users cannot assume similar scale 

at each end of the queue. 

6.2 Dynamic Scaling 
Dynamically adding VMs to a deployment at runtime is a useful 

feature of Azure enabling dynamic load matching, but you should 

be aware that it often takes on the order of 10 minutes from the 

time of the request until the instance is integrated into the 

deployment. If fast scaling out is important, hot-standbys may be 

required if a 10 minute delay is not acceptable, although this 

option would incur a higher economic cost. Additionally, web 

roles took, on average, 60 seconds longer to come up for small 

instance types, and about 30 seconds longer for medium to extra 

large instance sizes. 

6.3 Azure SQL Services 
Users should expect a single Azure-based client accessing SQL 

Azure to take about twice as long as a single local-enterprise 

client accessing SQL Server within the enterprise -commodity 

hardware. Therefore, if speed is a chief concern and the number of 

concurrent clients is expected to be small, a local deployment -

with local clients- will obtain the better performance. The opaque 

and potentially changing nature of the Cloud prevents us from 

determining exactly why there was a 2X slowdown. 

We found that the throughput of a single large database instance -

10GB max size- peaks at 30 concurrent clients running 

continuous transactions tested using OLTP-style TCPE database 

benchmark. The corresponding peak was seen at 6 concurrent 

clients in our LAN testing. In that case we experience 50% 

transaction failure and the average transaction completion time, 

for those that did complete, was 65% longer than that of a single 

client. For 8 concurrent clients we found a reasonable 15% 

transaction completion time increase. Use these numbers and the 

graphs presented in Section 5 as a general guide to concurrency 

limits in SQL Azure. 

We did, however, find that performance over time was consistent, 

although there are rare occasions -less than 1.6% occurrence for 

50% slowdown or worse, 0.3% for 2x slowdown or worse- where 

performance degraded significantly. Therefore, we have seen no 

reason to provision assuming a worst-case behavior in SQL Azure 

that is significantly worse than average-case behavior. 

6.4 Testing & Development 
Development on the Azure Development Fabric & Development 

Storage should be approached with realistic expectations. The 

Azure Development Fabric & Development Storage provides the 

ability to test connectivity and functional correctness of your own 

code, but only under limited concurrency. Additionally, the 

behavior of some SDK components may not match the 

deployment environment. One example is the load balancing 

algorithm: the Development Fabric appears to load-balance based 

on each instance‘s outstanding requests and does round-robin on 

equivalently loaded instances. In the full deployment environment 

the load balancer appears to utilize random scheduling amongst 

web role instances. Differences like these can make debugging 

deployed applications difficult if users assume the same behavior 

as seen in the smaller-scale local SDK environment. 

7. CONCLUSION 
In this paper we have presented the results from experiments we 

have conducted on Windows Azure. We have shown an 

exhaustive performance evaluation of each of the integral parts of 

the platform: virtual machines, storage services – table, blob and 

queue- and SQL services. Based on these experiments, we also 

provide our performance-related recommendations for users of the 

Windows Azure platform.  

These cloud services are the building blocks for cloud 

applications, and are usually presented to the user as a black box, 

with no performance guarantees. Our main focus is to provide the 

community with performance information and concrete 

recommendations that help the design and development of 

scalable cloud applications. 
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