
Lightweight Superscalar Task Execution in Distributed
Memory

Asim YarKhan
University of Tennessee, Knoxville

yarkhan@icl.utk.edu

Jack Dongarra
University of Tennessee, Knoxville

Oak Ridge National Laboratory
University of Manchester

dongarra@eecs.utk.edu

ABSTRACT
Arguably, we have yet to find a solution to the burden of multicore
distributed programming facing domain scientists. This burden has
been exacerbated by the increasing size of multicores, increasing
the effect of any excess synchronization. To deal with these dif-
ficulties, numerical algorithms are re-engineered as sequences of
interdependent tile-based tasks which can be executed by a dynamic
runtime environment. We present a new runtime environment for
distributed architectures which uses superscalar scheduling con-
cepts. Tasks are inserted serially, and the runtime determines the
dependencies dynamically and manages data movement transpar-
ently. QUARK-D (QUeuing and Runtime for Kernels on Distributed
Memory) is shown to scale to O(1000) cores for linear algebra al-
gorithms and have competitive performance. The primary message
of this research is that scalable and competitive performance can
be achieved by a distributed-memory execution system using super-
scalar scheduling ideas where serial code is the input and parallel
execution correctness is guaranteed.

1. INTRODUCTION
Multicore architectures with high core counts have come to domi-

nate the world of high performance computing, from shared memory
machines to the largest distributed memory clusters. The multicore
route to increased performance has a simpler design and better
power efficiency than the traditional approach of increasing proces-
sor frequencies. From a user’s point of view, the availability of all
this parallel power is welcome, but the ability to create applications
that efficiently and effectively use this architecture is challenging.
The complexities of using such architectures start at the level of the
highly multicore machines, and any complexities are made much
greater with the addition of the distributed memory clusters.

Traditional scientific libraries and development methodologies are
finding it difficult to efficiently manage and use the high number of
computational cores that have become available in these complex ar-
chitectures. Even though alternative programming approaches exist
for development on these many-core and distributed memory archi-
tectures, MPI remains a standard for achieving high performance
in distributed memory machines. However, MPI is not designed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

to fully utilize these many-core architectures in a shared memory
environment, so programming is complicated by the addition of
a thread management systems such as Pthreads or OpenMP. As a
result, developing efficient and scalable software for a complex,
many-core, distributed-memory architecture remains a challenging
and arduous task.

As a concrete example of a scientific software library, this work
will use the PLASMA linear algebra library [1] as its driving applica-
tion. Linear algebra algorithms are vital to many areas of scientific
computing, and any improvement in the performance of these li-
braries can have a beneficial effect on a variety of fields. Research
in linear algebra has reformulated algorithms as tasks acting on tiles
of data, with data dependency relationships between the tasks [6].
This results in a task-based DAG for the reformulated algorithms,
which can be executed via asynchronous data-driven execution paths
analogous to dataflow execution.

In this work, we study the use of dynamic runtime environments
executing data driven applications as a solution to programming
multicore architectures. The goals of our runtime environments
are productivity, scalability, and performance. We demonstrate
productivity by defining a simple programming interface to express
code. Our runtime environments are experimentally shown to be
scalable and give competitive performance on large multicore and
distributed memory machines.

Review of Tile-Based Algorithms It has been argued by But-
tari et.al. [6] that to achieve high performance on highly parallel
multicore architectures, algorithms will have to be expressed at a
fine-granularity for improved local cache management, and with
high asynchronicity to take advantage of the available cores and
reduce synchronization points.

This tile approach consists of breaking the linear algebra algo-
rithms into smaller tasks that operate on relatively small nb× nb
tiles (or blocks) of cache-local consecutive data which are organized
into block-columns The algorithms can then be restructured as tasks
(which map to basic linear algebra operations) that act on tiles of the
matrix. The data dependencies between these tasks forms a Directed
Acyclic Graph (DAG) where nodes of the graph represent tasks and
edges represent dependencies among the tasks. This approach is
currently used in shared memory libraries, such as PLASMA from
the University of Tennessee [1] and FLAME from the University
of Texas at Austin [7]. The tile-based approach to linear algebra
algorithms has been presented and discussed in [5], [11], [8], and
[9].

The execution of tiled algorithms can be performed by using a
runtime environment to asynchronously schedule the tasks in a way
that dependencies are not violated. Optimally, we would like this
asynchronous scheduling to result in an superscalar, out-of-order
execution where the cost of slow, sequential tasks is hidden by

parallel ones. This would be managed by having the sequential tasks
start early, as soon as their dependencies are satisfied, while some
of the parallel tasks (submatrix updates) from the previous iteration
still remain to be performed and can be executed in parallel.

Tile QR factorization 1 The QR factorization implemented in
LAPACK is a factorization of an m×n real matrix using the decom-
position of A as A=QR, where Q is an m×m real orthogonal matrix
and R is an m×n real upper triangular matrix. The QR factorization
uses a series of elementary Householder matrices of the general
form H = I − τvvT , where v is a column reflector and τ is a scaling
factor. -The tile QR algorithm produces essentially the same factor-

Algorithm 1 Tile QR factorization algorithm
1: for k = 1,2 to NT do
2: DGEQRT(Ak,k,Tk,k)
3: for n = k+1 to NT do
4: DORMQR(Akk,Tkk,Akn)
5: end for
6: for m = k+1 to NT do
7: DTSQRT(Akk,Amk,Tmk)
8: for n = k+1 to NT do
9: DTSMQR(Akn,AmnAmk,Tmk)

10: end for
11: end for
12: end for

ization as the LAPACK algorithm, but it differs in the Householder
reflectors that are produced and the construction of the Q matrix.
The algorithm is outlined in Algorithm 1. In order to restructure the
QR algorithm as a tile algorithm, the dominant operation from the
innermost loop needs to be different from the standard LAPACK
implementation. In LAPACK, the dominant operation is the highly
optimized GEMM and in the tile algorithm it is a new kernel operation
TSMQR. The TSMQR operation, even though it is a matrix-matrix oper-
ation, has not been tuned and optimized to the extent of GEMM, so it
reaches a lower percentage of peak performance on a CPU. For the
purposes of thispaper, these operations can be viewed as black-box
operations that operate on tiles of data.

Fig. 1 shows the pseudocode for the tile QR factorization as an
algorithm designer might view it. Tasks in this QR factorization
depend on previous tasks if they use the same tiles of data. If these
dependencies are used to relate the tasks, then a directed acyclic
graph (DAG) is implicitly formed by the tasks (see Fig. 2).

Overview of Task-Superscalar Execution Task-superscalar ex-
ecution takes a serial sequence of tasks as input and schedules them
for execution in parallel, inferring the data dependencies between the
tasks at runtime. The dependencies between the tasks are inferred
through the resolution of data hazards: Read after Write (RaW),
Write after Read (WaR) and Write after Write (WaW). These data de-
pendencies are extracted from the serial code by having the user an-
notate the usage of the data when defining the tasks, noting whether
the data is to be read and/or written.

Task-superscalar execution results in a asynchronous, data-driven
execution that can be represented by a Direct Acyclic Graph (DAG),
where the tasks are the nodes in the graph and the edges correspond
to data movement between the tasks. Task-superscalar execution is
a powerful tool for the productivity of the code writer. Since serial
code is the input to the runtime system, and the parallel execution
respects all the data hazards, the correctness of the serial code

1Note, because of space constraints, the details of tile Cholesky and
other algorithms are not presented here. These can be found in [6]
and related publications.

guarantees parallel correctness. Various approaches to superscalar
task execution include [12], [10], [2] and [3].

2. THE QUARK-D SOLUTION
In the work reported here, we have designed and implemented a

prototype runtime environment for multicore distributed memory
systems called QUARK-D (QUeuing And Runtime for Kernels on
Distributed memory) [13].

Design Principles In designing QUARK-D a major desired fea-
ture was high productivity in writing applications. This productivity
is enabled by having a simple serial API for adding tasks into the
system. This API is then used in conjunction with a smart runtime
environment that determines data dependencies, performs transpar-
ent communication, and schedules tasks. The user can provide
additional information to tune the execution, but even in the absence
of that information the runtime should make reasonable choices
about where tasks execute and when data is moved. QUARK-D
should make all runtime decisions using local knowledge, without
requiring any global coordination. All runtime actions should pro-
ceed asynchronously without blocking for completion. A distributed
data coherency protocol ensures that any copies of data are man-
aged in order to decrease communication. A dynamic, non-blocking
engine handles asynchronous communication.

Memory Model and Data Distribution QUARK-D uses a dis-
tributed memory model with the initial location of a data item ref-
erenced by a combination of a node and an address. The data that
QUARK-D works on can be initialized and distributed by the user
in several ways, but for linear algebra the data distribution is mod-
eled after the block-cyclic distribution used by ScaLAPACK. This
allows the problem size to be scaled with the size of the distributed
machine.

Distributed Task Insertion API For each task that is inserted
into QUARK-D, a function pointer specifies the function to be called
when the dependencies are satisfied. Each argument for the function
has flags that specify how that data was to be used; either as a static
value, or an INPUT/INOUT/OUTPUT dependency. Each argument is
provided with size information, which is needed for communication.
Each argument needs a pointer to the data, the process identifier for
the home of the data, and a process-specific key for the data. This
key is required since the data item does not reside at every process;

for k = 0 ... TILES -1
geqrt(Arw

kk , T w
kk)

for n = k+1.. TILES -1
unmqr(Ar

kk−low, T r
kk, Arw

kn)
for m = k+1.. TILES -1

t s q r t (Arw
kk−up, Arw

mk, T rw
mk)

for n = k+1.. TILES -1
tsmqr(Ar

mk, T r
mk, Arw

kn , Arw
mn)

UNMQR

TSQRT TSMQR

GEQRT

Figure 1: Pseudocode for the tile QR factorization, when acting
on a matrix. The line at the bottom visualizes a sequence of tasks
unrolled by the loops.

we do not have an easy common handle to use at every process.

QUARKD_Insert_Task(quark ,*func ,*funcflags ,
a_flags ,size_a ,*a,a_home ,a_key ,
b_flags ,size_b ,*b,b_home ,b_key ,
..., 0);

The task insertion API closely matches the shared memory API
which was used in developing the PLASMA linear algebra library,
allowing shared memory algorithms to be (almost) automatically
extended to distributed memory platforms.

Execution Model and Runtime Decisions QUARK-D proceeds
from serial task insertion operations, where every task is inserted
into the runtime environment at each distributed memory process.
As each task is inserted, information from the data parameters is
used by each process to independently come to the same decision
about which process is going to execute that task. By default, this
decision about the executing process is based on which parameter
is going to be written by the task, however, the decision can be
overridden by the programmer.

Once the decision is made about which process is going to execute
the task, each of its data parameters is examined. If the executing
process does not have a valid copy of the data, then it inserts tasks
to receive a valid copy. If another process is the current owner
of the data, and the data-coherency shows that the executing task
does not have a valid copy of the data, it inserts tasks to send that
data. If the executing process is going to write the data item, then
that process becomes the current owner of the data and all other
copies are marked as invalid. All processes track the current owner
and validity of the copies of the data parameter. After any send or
receive tasks are inserted, the original task is inserted into the shared
memory runtime of the executing process. The sequential insertion
order of the tasks ensures that when the task finally executes, its
data is already valid and available.

The dependency relationships from previous usage of the data cre-
ate the implicit DAG based on data hazards: read-after-write (RAW),
write-after-read (WAR), write-after-write (WAW). Any required data
movement creates data transfer tasks which add new dependencies.
The tile QR factorization was shown in pseudocode in Fig. 1. As
an example of this execution model, the result of executing the QR
factorization on multiple processes using the distributed memory
algorithm is seen in Fig. 2.

Distributed Data Coherency When a data parameter is first seen
by all processes during the serial insertion of tasks, the initial own-
ership and address are known, since they are provided by the task-
insertion API. All non-owner processes can be assumed not to have
copies of the data at this time. If the data is transferred to another
process, and the task at the receiver is going to write the data, then
the ownership of the data is transferred to the receiver process and
any other copies are marked as invalid. If the data is only required
for read, then the ownership stays with the sender, and the receiver
is marked as having a valid copy. All processes track the movement
of data ownership of current data items at all times, based on the
information provided when each task is inserted.

This simple data coherency protocol enables us to minimize the
transfer of data. Since information about valid copies of the data
is available at all times, no unnecessary transfers are required. In
order to reduce the footprint of this data coherency protocol, the
information about data that was not recently used can be flushed at
well structured, regular intervals. The data coherency protocol runs
at task insertion time, not at the task execution time, so we use the
serialization of task insertion to keep the distributed state of the data
consistent.

Distributed Task Scheduling QUARK-D uses a mix of static

GEQRT

UNMQR UNMQR UNMQR

UNMQR UNMQR

TSQRT

TSMQR

TSMQR

TSMQR

TSMQR TSMQR GEQRT

UNMQR

GEQRT

TSMQR

TSMQR TSQRT

TSQRT

TSQRT

TSMQR TSMQR

TSMQR

TSMQR

TSQRT

TSQRT

GEQRT

TSMQR TSMQR

TSMQR

Figure 2: QUARK-D’s principles of operation. Scheduling the
DAG of the distributed memory QR factorization. Three distributed
memory processes are running the factorization algorithm on a 3x3
tile matrix. One multi-threaded process runs all the blue tasks,
another multi-threaded process runs the green tasks, and a third runs
the purple tasks. Colored links show local task dependencies. Black
arrows show inter-process communications.

and dynamic scheduling to assign tasks to the different processes
and threads. The static scheduling refers to the fact that a task is
scheduled for execution at a specific distributed memory process in a
manner that is independent of the current state of the execution. The
scheduling criteria have to be such that all the processes can inde-
pendently come to the same scheduling decision. This is considered
static because it is fixed at the time that the task is inserted. In gen-
eral, this is accomplished by having all the nodes agree that a task
will be scheduled at the home location of a specific data parameter
though the algorithm designer can override this binding. Fixing the
execution process at the time the task is inserted enables QUARK-D
to avoid the complexities and coordination involved in distributed
scheduling, distributed work balancing and data management.

The dynamic scheduling in QUARK-D occurs at the multi-threaded
shared-memory level. Data locality is used to assign a task to a
specific thread within the multi-threaded process. All the threads
look for and execute tasks that are assigned to them. However, if
there are no more tasks assigned to a thread, it will attempt to use
work-stealing to obtain a task from another thread. This dynamic
scheduling keeps the execution load balanced between the threads
in a process.

Communication Engine In QUARK-D the communications are
inferred from the data usage by tasks in conjunction with the current
distribution of the data. For example, if a process is currently the
owner of a piece of data, and that data is to be written by a task
scheduled to be executed by another process, then the two processes

independently and asynchronously insert tasks that manage the
sending and receiving of that data. The key features of the QUARK-
D communication engine are that it is dynamic, non-blocking and
asynchronous, meaning that the engine will manage the transfer data
as needed, the data transfers will not block the computational threads,
and the data transfers are done using asynchronous techniques. The
goal is to allow communication to overlap any computation that can
be performed simultaneously. The communications are all point-to-
point, from the task that is the current owner of the data to any tasks
that need that data.

Window of Active Tasks In order to manage large problems, a
fixed-size moving window of active tasks is used from the serial-
ized task insertion. When the window is full, the master thread at
each node switches to a computational mode. As tasks complete,
additional tasks are allowed into the runtime system.

Serial Unrolling Bottleneck The productivity gain in QUARK-
D is due to serial presentation of code. However, this creates a
limitation in QUARK-D as the size of the distributed memory ma-
chine grows. Since fewer of the unrolled tasks are being executed
at the local node, there is increasing overhead with respect to the
computation work. We can compensate for some of this overhead
by having larger tiles of data and thus fewer tasks and more local
work. On the other hand, larger tiles would mean less available par-
allelism. The serial unrolling may eventually become a bottleneck
for performance as the machine size keeps growing.

3. EXPERIMENTAL EVALUATION
Experiments are performed using the tile Cholesky and QR fac-

torizations described in [6] and [13]. The Cholesky implementation
is relatively simple and has few dependencies or constraints so the
runtime can demonstrate the highest performance. The QR imple-
mentation is more complex, with more constraints in the DAG.

We perform weak scalability experiments where the quantity of
work performed by a single core is kept constant and the matrix size
is adjusted to reflect this. For our experiments with QUARK-D, we
used two distributed memory clusters.
Small Cluster The dancer cluster is a 16 node machine, where each
node has 2 Intel Xeon E5520 2.27 GHz quad-core processors for a
total of 128 cores. The nodes are connected via Infiniband 20G and
there is at least 8GB of memory per node. We used OpenMPI 1.5.5
compiled with gcc, and Intel MKL 11.1 math libraries.
Large Cluster The Kraken supercomputer at the Oak Ridge Na-
tional Laboratory is a Cray XT5 machine with 9,408 compute nodes.
Each node has two Istanbul 2.6 GHz six-core AMD Opteron proces-
sors, 16 GB of memory, and the nodes are connected through the
SeaStar2+ interconnect. We used the PGI compilers with Cray MPI
and the Cray LibSci math libraries. For our experiments, we used a
small subset of the resources on Kraken.

On each platform we also performed the experiments using a
high quality commercial numerical library that was appropriate for
the platform. On the small cluster, QUARK-D is compared with
the Intel MKL 11.1 ScaLAPACK implementation. On the large
cluster, QUARK-D is compared with the Cray LibSci ScaLAPACK
implementation. The ScaLAPACK implementations are executed
using a process-per-core model with single threaded BLAS in each
process.

Experimental results are also compared with the PARSEC/D-
PLASMA [3] linear algebra library on each platform. The PARSEC
project is implementing a distributed memory DAG execution envi-
ronment that uses compact parameterized DAG descriptions. The
PARSEC runtime has been used to implement a subset of linear alge-
bra applications in the DPLASMA package, which has been shown
to be highly competitive with other specialized libraries and algo-

#define A(m,n) ADDR(A),HOME(m,n),KEY(A,m,n)
#define T(m,n) ADDR(T),HOME(m,n),KEY(T,m,n)

void plasma_pdgeqrf(A, T,.) {
for (k = 0; k < M; k++) {
TASK_dgeqrt(quark ,.,A(k,k),T(k,k));
for (n = k+1; n < N; n++)
TASK_dormqr(quark ,..,A(k,k),T(k,k),A(k,n));

for (m = k+1; m < M; m++) {
TASK_dtsqrt(quark ,.,A(k,k),A(m,k),T(m,k));
for (n = k+1; n < N; n++)
TASK_dtsmqr(quark ,.,A(k,n),A(m,n),

A(m,k),T(m,k)); }}}

(a) The distributed memory tile QR factorization using QUARK-D. Each
parameter’s address, home process, and key is specified via the macro. The
read/write usage of parameters is provided in a task wrapper.

void TASK_dgeqrt(
Quark *quark ,.,int m,int n,
double *A,int A_home ,key *A_key ,
double *T,int T_home ,key *T_key)

{
QUARKD_Insert_Task(quark ,CORE_dgeqrt ,...,

VALUE ,sizeof(int),&m,
VALUE ,sizeof(int),&n,
INOUT|LOCALITY ,sizeof(A),A,A_home ,A_key ,
OUTPUT ,sizeof(T),T,T_home ,T_key ,. ,0);

}

(b) The DGEQRT task wrapper used in the QR factorization algorithm. This
wrapper provides information about the read/write usage of the parameters
and inserts the task into the QUARK-D runtime.

void CORE_dgeqrt(Quark *quark)
{
int m,n,ib,lda ,ldt;
double *A,*T,*TAU ,*WORK;
quark_unpack_args_9(quark ,m,n,ib,A,

lda ,T,ldt ,TAU ,WORK);
CORE_dgeqrt(m,n,ib,A,lda ,T,ldt ,TAU ,WORK);

}

(c) The DGEQRT task implementation is called by the QUARK-D run-
time when all the dependency requirements have been met. Parameters are
unpacked from the QUARK-D environment, and the (final) core routine
provided by a library is called.

Figure 3: Tile-QR implementation using QUARK-D

rithm specific implementations [4]. Since PARSEC uses compact
parameterized DAGs, it avoids a substantial part of the overheads
in QUARK-D, so it is expected to give a higher performance than
QUARK-D. The advantage that QUARK-D holds over PARSEC
is in the productivity of writing serial code over the difficulty of
generating compact DAG representations. It should be noted that the
PARSEC developers are working on a compiler approach to simplify
the generation of compact parameterized DAG descriptions.

QR factorization In order to demonstrate that the QUARK-D
API increases the productivity of the user, we outline the implemen-
tation of the tile-QR factorization. Fig. 3a shows a refined version of
the QR algorithm as it was implemented. This code closely matches
the pseudocode in Fig. 1. The macro at the top shows how a data-tile
reference is expanded to contain the address of the tile, the home
process for the tile, and a key for referring to that tile. The fact that
we were able to keep the code so close to the pseudocode shows that
QUARK-D is achieving the productivity that was sought as one of
the major goals of the project.

Figure 4: Trace of a QR factorization of a matrix consisting of 16x16
tiles on 4 (2x2) distributed memory nodes using 4 computational
threads per node. An independent MPI communication thread is also
maintained. Color coding: MPI (pink); GEQRT (green); TSMQR
(yellow); TSQRT (cyan); UNMQR (red).

Fig. 3b shows how the DGEQRT task is inserted into the runtime
using a small wrapper routine. This wrapper provides the additional
information required by the runtime system which is common to all
calls to DGEQRT. Specifically, the information provided includes the
usage (INPUT, OUTPUT, INOUT, VALUE) of the parameters, the sizes
of the parameters, and additional hinting information provided by
the programmer. Note that for each dependency parameter, a home
node and a local key were provided from the calling routine. The
task information is then stored in the QUARK-D runtime, where the
execution of the task is held until all the data dependencies are satis-
fied. At that point, the task is ready to be scheduled for execution.
Fig. 3c shows the function that is called by QUARK-D when the task
is eventually executed. In this function, the parameters are extracted
from the QUARK-D runtime, the arguments and dependencies are
unpacked, and the serial core routine is called.

A example of the dependencies and execution of the tile QR
algorithm was presented in the DAG in Fig 2. In Fig. 4 we see a
trace of the execution of the QR factorization using 4 distributed
memory nodes with 4 computational threads each. This trace shows
the tasks keeping the cores busy with computation, with occasional
gaps in the trace where the DAG does not have enough parallelism
to keep the cores busy. The gaps in this trace are mostly because a
small problem of 16×16 tiles is being traced and does not generate
sufficient parallel work. Such gaps could occur anytime that the
DAG does not provide sufficient parallelism and lookahead to hide
the bottleneck tasks. The trace for a larger problem is not shown
because it would become too congested. A separate communication
thread is shown associated with each process. This thread is sharing
one of the cores with a computational thread.

Tile QR Experiments Experimental results on the small cluster
are given in Fig. 5a and show that QUARK is faster than MKL on
this platform, and while performance is lower than PARSEC, it is
still very competitive. Fig. 5b shows the weak scaling experiment
on the large cluster using 1200 cores. In this experiment, we see
that QUARK-D trails the Cray LibSCI implementation. PARSEC’s
performance on QR factorization exceeds the LibSCI performance,
which validates the use of asynchronous data driven DAG execution.
PARSEC and QUARK-D implement very similar algorithms, but
QUARK-D has additional superscalar overheads that PARSEC does
not have. The theoretical peak performance and the scaled single-
core GEMM performance are shown to give a measure of how much
of the peak is being achieved.

It is important to note that the tile QR implementations imple-
mented by PARSEC and QUARK-D have TSMQR as the dominant

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140

G
F

lo
p

s

Number of cores (8 cores/node)

Dist Mem nodes (2x4-core) 2.27 GHz Xeon [dancer]

Theoretical Peak Performance
PARSEC (nb=240,ib=48)
QUARKD (nb=260,ib=52)

ScaLAPACK (nb=128)

(a) Weak scaling performance of QR factorization on a small cluster. Factor-
izing a matrix (5000x5000/per core) on up to 16 distributed memory nodes
with 8 cores per node.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200

G
F

lo
p

s

Number of cores (12 cores/node)

QR factorization with weak scaling (5000x5000/core)
 100 nodes with 2x6 2.6GHz Opteron Istanbul cores/node [kraken]

Theoretical Peak Performance
DGEMM Peak Performance (single core)

PARSEC (NB=260)
ScaLAPACK (proc per core,NB=180)

QUARKD (NB=468)

(b) Weak scaling performance for QR factorization (DGEQRF) of a matrix
(5000x5000/per core) on 1200 cores (100 distributed memory nodes with
12 cores per node).

Figure 5: Tile QR Experiments

operation in the innermost loop, whereas the commercial imple-
mentations have the much higher optimized GEMM as the dominant
operation. In spite of that handicap, the QUARK-D and PARSEC
implementations performed very well. It is likely that if the TSMQR
kernel is optimized to the same point as the GEMM kernel, then the
tile algorithms will show substantially increased performance.

Tile Cholesky Experiments The Cholesky factorization forms
a relatively simple DAG structure with a single output dependency
from each task. This means that data ownership does not need to be
transferred to other processes, since data writes can always be done
at the home process of the data. Copies of data will still be sent to
other processors for reading.

In Fig. 6a experimental results on the small cluster compare
Cholesky factorization performance using QUARK-D, Intel MKL,
and PARSEC. The QUARK-D implementation scales better than
the MKL implementation but not as well as the PARSEC imple-
mentation. The weak scaling performance on the large 1200 core
cluster is shown in Fig. 6b. On this large cluster the QUARK-D
implementation has better performance than the Cray LibSCI library.
The PARSEC implementation reaches a higher performance than
the other implementations. The main problem with PARSEC is
productivity since writing compact DAG representations remains a
difficult process. QUARK-D focuses on the productivity gained by
writing serial style, loop based code and using superscalar execution.
In spite of this ease of coding, QUARK is able to produce better
performance than the commercial LibSCI implementation.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140

G
F

lo
p

s

Number of cores (8 cores/node)

Dist Mem - 16 nodes (2x4-core) 2.27 GHz Xeon [dancer]

Theoretical Peak Performance
PARSEC/DPLASMA (nb=240)

QUARKD (nb=312)
ScaLAPACK (nb=96)

(a) Small cluster: Weak scaling performance of Cholesky factorization
(DPOTRF) of a matrix (5000x5000/per core) on 16 distributed memory
nodes with 8 cores per node.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200

G
F

lo
p

s

Number of cores (12 cores/node)

Cholesky factorization with weak scaling (5000x5000/core)
 100 nodes with 2x6 2.6GHz Opteron Istanbul cores/node [kraken]

Theoretical Peak Performance
DGEMM Peak Performance (single core)

PARSEC (NB=288)
QUARKD (NB=468)

ScaLAPACK (NB=180)

(b) Large cluster: Weak scaling performance for Cholesky factorization
(DPOTRF) of a matrix (5000x5000/per core) on 1200 cores (100 distributed
memory nodes with 12 cores per node).

Figure 6: Tile Cholesky Experiments

4. SUMMARY AND CONCLUSIONS
We motivated this work by describing how improvements in

distributed multicore architectures require asynchronous execution
to properly take advantage of the available hardware. To this end,
algorithms are being restructured as tasks with data dependencies
that can be executed by a runtime environment. Using serial input
and superscalar execution has a substantial positive impact on the
productivity of the programmer, and we have presented our API and
sample code to justify this.

We have designed and implemented QUARK-D, a runtime envi-
ronment to schedule and execute task-based applications using su-
perscalar techniques on distributed memory architectures. QUARK-
D is designed for productivity, scalability and performance. To
demonstrate productivity, algorithms from the PLASMA linear al-
gebra library are executed using QUARK-D. The scalability and
performance of QUARK-D is compared to that of commercial linear
algebra libraries and to the PARSEC runtime environment. Exper-
iments performed on 128 cores of a small cluster and 1200 cores
of a large cluster show that QUARK-D can be scalable and have
performance competitive with the commercial solutions.

This work shows that a runtime environment can achieve per-
formance and scalability on distributed memory platforms while
retaining the simplicity of a serial programming interface by using
superscalar scheduling and execution, where serial code is the input
and parallel execution correctness is guaranteed.

Acknowledgments This research was funded in part by grants
from the National Science Foundation (NSF # OCI-1032815 and

NSF # CCF-0811642) and industry support was provided by Mi-
crosoft. Thanks to the National Institute for Computational Science
(NICS) for access to their computational resources.

5. REFERENCES
[1] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,

J. Langou, H. Ltaief, P. Luszczek, and A. YarKhan. PLASMA
Users Guide. Technical report, ICL, University of Tennessee,
2010.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier.
StarPU: A Unified Platform for Task Scheduling on
Heterogeneous Multicore Architectures. In Proceedings of the
15th International Euro-Par Conference on Parallel
Processing, Euro-Par ’09, pages 863–874, Berlin, Heidelberg,
2009. Springer-Verlag.

[3] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar,
T. Herault, J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief,
P. Luszczek, A. YarKhan, and J. Dongarra. Flexible
Development of Dense Linear Algebra Algorithms on
Massively Parallel Architectures with DPLASMA. In
Proceedings of the 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops, IPDPSW ’11,
pages 1432–1441, Washington, DC, USA, 2011. IEEE
Computer Society.

[4] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault,
P. Lemarinier, and J. Dongarra. DAGuE: A generic distributed
DAG engine for High Performance Computing. Parallel
Computing, 38(1-2):37–51, 2012.

[5] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek,
and S. Tomov. The Impact of Multicore on Math Software. In
B. Kågström, E. Elmroth, J. Dongarra, and J. Wasniewski,
editors, Applied Parallel Computing. State of the Art in
Scientific Computing, volume 4699 of Lecture Notes in
Computer Science, pages 1–10. Springer Berlin / Heidelberg,
2007.

[6] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class of
parallel tiled linear algebra algorithms for multicore
architectures. Parallel Comput., 35(1):38–53, Jan. 2009.

[7] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A.
van de Geijn. FLAME: Formal Linear Algebra Methods
Environment. ACM Trans. Math. Softw., 27:422–455,
December 2001.

[8] J. Kurzak, A. Buttari, and J. Dongarra. Solving Systems of
Linear Equations on the CELL Processor Using Cholesky
Factorization. IEEE Trans. Parallel Distrib. Syst.,
19:1175–1186, September 2008.

[9] J. Kurzak and J. Dongarra. QR factorization for the Cell
Broadband Engine. Scientific Programming, 17(1):31–42,
2009.

[10] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta.
Hierarchical task-based programming with StarSs. Int. J. High
Perf. Comput. Applic., 23(3):284–299, 2009.
DOI: 10.1177/1094342009106195 .

[11] E. S. Quintana-Ortí and R. A. Van De Geijn. Updating an LU
Factorization with Pivoting. ACM Trans. Math. Softw.,
35(2):11:1–11:16, July 2008.

[12] M. C. Rinard and M. S. Lam. The design, implementation,
and evaluation of Jade. ACM Trans. Program. Lang. Syst.,
20(3):483–545, May 1998.

[13] A. YarKhan. Dynamic Task Execution on Shared and
Distributed Memory Architectures. PhD thesis, University of
Tennessee, December 2012.

http://dx.doi.org/10.1177/1094342009106195

	Introduction
	The QUARK-D Solution
	Experimental Evaluation
	Summary and Conclusions
	References

