
Toward a Common Model for
Highly Concurrent Applications

Douglas Thain

University of Notre Dame

MTAGS Workshop

17 November 2013

Overview

• Experience with Concurrent Applications
– Makeflow, Weaver, Work Queue

• Thesis: Convergence of Models
– Declarative Language

– Directed Graphs of Tasks and Data

– Shared Nothing Architecture

• Open Problems
– Transaction Granularity

– Where to Parallelize?

– Resource Management

• Concluding Thoughts

The Cooperative
Computing Lab

http://www.nd.edu/~ccl

University of Notre Dame

The Cooperative Computing Lab
• We collaborate with people who have large

scale computing problems in science,
engineering, and other fields.

• We operate computer systems on the
O(10,000) cores: clusters, clouds, grids.

• We conduct computer science research in the
context of real people and problems.

• We release open source software for large
scale distributed computing.

4
http://www.nd.edu/~ccl

Our Collaborators

AGTCCGTACGATGCTATTAGCGAGCGTGA…

Good News:
Computing is Plentiful

Superclusters by the Hour

8 http://arstechnica.com/business/news/2011/09/30000-core-cluster-built-on-amazon-ec2-cloud.ars

The Bad News:
It is inconvenient.

9

10

End User Challenges
• System Properties:

– Wildly varying resource availability.

– Heterogeneous resources.

– Unpredictable preemption.

– Unexpected resource limits.

• User Considerations:

– Jobs can’t run for too long... but, they can’t run too quickly,
either!

– I/O operations must be carefully matched to the capacity of
clients, servers, and networks.

– Users often do not even have access to the necessary
information to make good choices!

11

I have a standard, debugged, trusted
application that runs on my laptop.

A toy problem completes in one hour.
A real problem will take a month (I think.)

Can I get a single result faster?
Can I get more results in the same time?

Last year,
I heard about
this grid thing.

What do I do next?

This year,
I heard about

this cloud thing.

Our Philosophy:

• Harness all the resources that are available:
desktops, clusters, clouds, and grids.

• Make it easy to scale up from one desktop to
national scale infrastructure.

• Provide familiar interfaces that make it easy to
connect existing apps together.

• Allow portability across operating systems,
storage systems, middleware…

• Make simple things easy, and complex things
possible.

• No special privileges required.

An Old Idea: Makefiles

13

part1 part2 part3: input.data split.py

 ./split.py input.data

out1: part1 mysim.exe

 ./mysim.exe part1 >out1

out2: part2 mysim.exe

 ./mysim.exe part2 >out2

out3: part3 mysim.exe

 ./mysim.exe part3 >out3

result: out1 out2 out3 join.py

 ./join.py out1 out2 out3 > result

14

Makeflow = Make + Workflow

Makeflow

Local Condor SGE
Work

Queue

• Provides portability across batch systems.

• Enable parallelism (but not too much!)

• Fault tolerance at multiple scales.

• Data and resource management.

http://www.nd.edu/~ccl/software/makeflow

Makeflow Applications

Example: Biocompute Portal

Generate Makefile

Make
flow

Run
Workflow

Progress
Bar

Transaction
Log

Update
Status

Condor
Pool

Submit
Tasks

BLAST
SSAHA
SHRIMP
EST
MAKER
…

Generating Workflows with Weaver

db = SQLDataSet('db', 'biometrics', 'irises');

irises = Query(db,color==‘Blue’)

iris_to_bit = SimpleFunction('convert_iris_to_template‘)

compare_bits = SimpleFunction('compare_iris_templates')

bits = Map(iris_to_bit, irises)

AllPairs(compare_bits, bits, bits, output='scores.txt')

SQL
DB

I1

I2

I3

F

F

F

T1

T2

T3

S11

S21

S31

S12

S22

S32

S13

S23

S33

Query
Map All-Pairs

Weaver + Makeflow + Batch System

• A good starting point:

– Simple representation is easy to pick up.

– Value provided by DAG analysis tools.

– Easy to move apps between batch systems.

• But, the shared filesystem remains a problem.

– Relaxed consistency confuses the coordinator.

– Too easy for Makeflow to overload the FS.

• And the batch system was designed for large jobs.

– Nobody likes seeing 1M entries in qstat.

– 30-second rule applies to most batch systems

19

worker

worker
worker

worker
worker

worker
worker

T In.txt out.txt

put P.exe
put in.txt
exec P.exe <in.txt >out.txt
get out.txt

1000s of workers
dispatched to
clusters, clouds, and
grids

Work Queue System

Work Queue Library

Work Queue Program
C / Python / Perl

http://www.nd.edu/~ccl/software/workqueue

Private
Cluster

Campus
Condor

Pool

Public
Cloud

Provider

Shared
SGE

Cluster

Makefile

Makeflow

Local Files and
Programs

Makeflow + Work Queue
sge_submit_workers

W

W

W

ssh

W W

W W

W

W

v

W

condor_submit_workers

W

W

W

Hundreds of
Workers in a

Personal Cloud

submit
tasks

Managing Your Workforce

Torque
Cluster

Master
A

Master
B

Master
C

Condor
Pool

W

W

W

W

W
W

Submits new workers.
Restarts failed workers.
Removes unneeded workers.

WQ
Pool

200

work_queue_pool –T condor

WQ
Pool

200

work_queue_pool –T torque

500

W

W

W

0

Private
Cluster

Campus
Condor

Pool

Public
Cloud

Provider

Shared
SGE

Cluster

Makefile

Makeflow

Local Files and
Programs

Hierarchical Work Queue
sge_submit_workers

W

W

W

ssh

W

W W

W

W

F

condor_submit_workers

W

W

W

F F

F

23

Work Queue Library

http://www.nd.edu/~ccl/software/workqueue

#include “work_queue.h”

while(not done) {

 while (more work ready) {
 task = work_queue_task_create();
 // add some details to the task
 work_queue_submit(queue, task);
 }

 task = work_queue_wait(queue);
 // process the completed task
}

Adaptive Weighted Ensemble

24

Proteins fold into a number of distinctive states, each of
which affects its function in the organism.

How common is each state?
How does the protein transition between states?

How common are those transitions?

25

Simplified Algorithm:

– Submit N short simulations in various states.

– Wait for them to finish.

– When done, record all state transitions.

– If too many are in one state, redistribute them.

– Stop if enough data has been collected.

– Continue back at step 2.

AWE Using Work Queue

26

AWE on Clusters, Clouds, and Grids

New Pathway Found!

27

Credit: Joint work in progress with Badi Abdul-Wahid, Dinesh Rajan, Haoyun Feng, Jesus
Izaguirre, and Eric Darve.

Software as a Social Lever

• User and app accustomed to a particular system
with standalone executables.

• Introduce Makeflow as an aid for expression,
debugging, performance monitoring.

• When ready, use Makeflow + Work Queue to gain
more direct control of I/O operations on the
existing cluster.

• When ready, deploy Work Queue to multiple
systems across the wide area.

• When ready, write new apps to target the Work
Queue API directly.

Overview

• Experience with Concurrent Applications
– Makeflow, Weaver, Work Queue

• Thesis: Convergence of Models
– Declarative Language

– Directed Graphs of Tasks and Data

– Shared Nothing Architecture

• Open Problems
– Transaction Granularity

– Where to Parallelize?

– Resource Management

• Concluding Thoughts

Scalable Computing Model

for x in list f(g(x))

Weaver

B 4

A

C

1

2

3

D

E

F

Makeflow

1 A D

3 C F

Work Queue

A

C

D

E
F G

Shared-Nothing Cluster

Scalable Computing Model

for x in list f(g(x))

Declarative Language

B 4

A

C

1

2

3

D

E

F

Dependency Graph

1 A D

3 C F

Independent Tasks

A

C

D

E
F G

Shared-Nothing Cluster

Convergence of Worlds

• Scientific Computing
– Weaver, Makeflow, Work Queue, Cluster
– Pegasus, DAGMan, Condor, Cluster
– Swift-K, (?), Karajan, Cluster

• High Performance Computing
– SMPSS->JDF->DAGue->NUMA Architecture
– Swift-T, (?), Turbine, MPI Application

• Databases and Clouds
– Pig, Map-Reduce, Hadoop, HDFS
– JSON, Map-Reduce, MongoDB, Storage Cluster
– LINQ, Dryad, Map-Reduce, Storage Cluster

Thoughts on the Layers
• Declarative languages.

– Pros: Compact, expressive, easy to use.
– Cons: Intractable to analyze in the general case.

• Directed graphs.
– Pros: Finite structures with discrete components are easily

analyzed.
– Cons: Cannot represent dynamic applications.

• Independent tasks and data.
– Pros: Simple submit/wait APIs, data dependencies can be

exploited by layers above below.
– Cons: In most general case, scheduling is intractable.

• Shared-nothing clusters.
– Pros: Can support many disparate systems. Performance is

readily apparent.
– Cons: requires knowledge of dependencies.

Common Model of Compilers

• Scanner detects single tokens.
– Finite state machine is fast and compact.

• Parser detects syntactic elements.
– Grammar + push down automata. LL(k), LR(k)

• Abstract syntax tree for semantic analysis.
– Type analysis and high level optimization.

• Intermediate Representation
– Register allocation and low level optimization.

• Assembly Language
– Generated by tree-matching algorithm.

Overview

• Experience with Concurrent Applications
– Makeflow, Weaver, Work Queue

• Thesis: Convergence of Models
– Declarative Language

– Directed Graphs of Tasks and Data

– Shared Nothing Architecture

• Open Problems
– Transaction Granularity

– Where to Parallelize?

– Resource Management

• Concluding Thoughts

Observation:

Generating parallelism is easy but
making it predictable is hard!

Challenge: Transaction Granularity

• Commit every action to disk. (Condor)

+ Makes recovery from any point possible.

- Significant overhead on small tasks.

• Commit only completed tasks to disk. (Falkon)

- Cannot recover tasks in progress after a failure.

+ Fast for very small tasks.

- Extreme: Commit only completed DAG.

- Problem: Choice changes with workload!

Challenge: Where to Parallelize?

F(x)

DAG

Queue

W W W

F(x)

DAG

W W W

Q Q Q

F(x)

W W W

Q Q Q

D D D

F(x)

W W W

Q Q Q

F(x) F(x) F(x)

D D D

Challenge: Resource Management

The Ideal Picture

X 1000

What actually happens:

1 TB

GPU

3M files
of 1K each

128
GB X 1000

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=TSgVVrfg2fU3aM&tbnid=bbdpVtxxta9sPM:&ved=0CAUQjRw&url=http://hdw.eweb4.com/out/789146.html&ei=0T6BUZzfM-f62gW-noGQAw&bvm=bv.45921128,d.b2I&psig=AFQjCNFH4mZ-ap0lwcmXZVHKV_qTNxbZ4g&ust=1367511072608940

Some reasonable questions:

• Will this workload at all on machine X?

• How many workloads can I run simultaneously
without running out of storage space?

• Did this workload actually behave as expected
when run on a new machine?

• How is run X different from run Y?

• If my workload wasn’t able to run on this
machine, where can I run it?

End users have no idea what resources
their applications actually need.

and…

Computer systems are terrible at
describing their capabilities and limits.

and…

They don’t know when to say NO.

dV/dt : Accelerating the Rate of Progress
Towards Extreme Scale Collaborative Science

Miron Livny (UW), Ewa Deelman (USC/ISI), Douglas Thain (ND),

Frank Wuerthwein (UCSD), Bill Allcock (ANL)

… make it easier for scientists to conduct large-
scale computational tasks that use the power
of computing resources they do not own to
process data they did not collect with
applications they did not develop …

B1

B2

B3

A1 A2 A3

F

Regular Graphs Irregular Graphs

A

1

B

2 3

7 5 6 4

C D E

8 9 10

A

Dynamic Workloads

while(more work to do)
{
 foreach work unit {
 t = create_task();
 submit_task(t);
 }

 t = wait_for_task();
 process_result(t);
}

Static Workloads

Concurrent Workloads

Categories of Applications

F F F

F

F F

F F

Data Collection and Modeling

RAM: 50M
Disk: 1G
CPU: 4 C

monitor

task

workflow

typ max min

P
RAM

A

B C

D E

F

Workflow Schedule

A

C

F

B D E

Workflow Structure Workflow Profile

Task Profile
Records From

Many Tasks Task Record

RAM: 50M
Disk: 1G
CPU: 4 C

RAM: 50M
Disk: 1G
CPU: 4 C

RAM: 50M
Disk: 1G
CPU: 4 C

Portable Resource Management

Work
Queue

while(more work to do) {
 foreach work unit {
 t = create_task();
 submit_task(t);
 }

 t = wait_for_task();
 process_result(t);
}

RM

Task

W

W

W

task 1 details:
 cpu, ram, disk
task 2 details:
 cpu, ram, disk
task 3 details:
 cpu, ram, disk

Pegasus RM

Task

Job-1.res
Job-2.res

job-3.res

Makeflow
other
batch

system
RM

Task

rule-1.res
Jrule2.res

rule-3.res

http://research.cs.wisc.edu/htcondor/index.html
http://www3.nd.edu/~ccl/workflows/bwa/

Completing the Cycle

task

typ max min

P
RAM

CPU: 10s
RAM: 16GB
DISK: 100GB

task

RM

Allocate Resources

Historical Repository

CPU: 5s
RAM: 15GB
DISK: 90GB

Observed Resources

Measurement
and Enforcement

Exception Handling
Is it an outlier?

Complete Workload Characterization

X 1000

128 GB
32 cores

16 GB
4 cores

X 1 X 100

1 hour
5 Tb/s I/O

128 GB
32 cores

16 GB
4 cores

X 1 X 10

12 hours
500 Gb/s I/O

We can approach the question:
Can it run on this particular machine?

What machines could it run on?

At what levels of the model can
resource management be done?

Overview

• Experience with Concurrent Applications
– Makeflow, Weaver, Work Queue

• Thesis: Convergence of Models
– Declarative Language

– Directed Graphs of Tasks and Data

– Shared Nothing Architecture

• Open Problems
– Transaction Granularity

– Where to Parallelize?

– Resource Management

• Concluding Thoughts

Scalable Computing Model

for x in list f(g(x))
B 4

A

C

1

2

3

1 A D

3 C F

D

E

F

A

C

D

E
F G

Weaver

Makeflow

Work Queue Master

Work Queue
Workers

An exciting time to work
in distributed systems!

Talks by CCL Students This Weekend

• Casey Robinson,
Automated Packaging of Bioinformatics
Workflows for Portability and Durability
Using Makeflow,
WORKS Workshop, 4pm on Sunday.

• Patrick Donnelly,
Design of an Active Storage Cluster File
System for DAG Workflows,
DISCS Workshop on Monday.

Acknowledgements

55

CCL Graduate Students:

Michael Albrecht

Patrick Donnelly

Dinesh Rajan

Casey Robinson

Peter Sempolinski

Nick Hazekamp

Haiyan Meng

Peter Ivie

dV/dT Project PIs

Bill Allcock (ALCF)

Ewa Deelman (USC)

Miron Livny (UW)

Frank Weurthwein (UCSD)

CCL Staff

Ben Tovar

http://images.google.com/imgres?imgurl=http://www.cse.ohio-state.edu/mlss09/nsf_logo.jpg&imgrefurl=http://www.cse.ohio-state.edu/mlss09/&usg=__zxcUX_lch5XLVcIZHfU-LnOxe0E=&h=692&w=692&sz=173&hl=en&start=1&sig2=3X2k5jwHk0f0y8d74GDuuQ&tbnid=PoXQ4GjK2sVdaM:&tbnh=139&tbnw=139&prev=/images?q=nsf+logo&gbv=2&hl=en&ei=PnuBSonmEdTymQfc3O2rCw

The Cooperative
Computing Lab

http://www.nd.edu/~ccl

University of Notre Dame

