
Toward a Common Model for 
Highly Concurrent Applications 

Douglas Thain 

University of Notre Dame 
 

MTAGS Workshop 

17 November 2013 



Overview 

• Experience with Concurrent Applications 
– Makeflow, Weaver, Work Queue 

• Thesis: Convergence of Models 
– Declarative Language 

– Directed Graphs of Tasks and Data 

– Shared Nothing Architecture 

• Open Problems 
– Transaction Granularity 

– Where to Parallelize? 

– Resource Management  

• Concluding Thoughts 



The Cooperative 
Computing Lab 

http://www.nd.edu/~ccl 

University of Notre Dame 



The Cooperative Computing Lab 
• We collaborate with people who have large 

scale computing problems in science, 
engineering, and other fields. 

• We operate computer systems on the 
O(10,000) cores: clusters, clouds, grids. 

• We conduct computer science research in the 
context of real people and problems. 

• We release open source software for large 
scale distributed computing. 

4 
http://www.nd.edu/~ccl 



Our Collaborators 

AGTCCGTACGATGCTATTAGCGAGCGTGA… 



Good News: 
Computing is Plentiful 



 



Superclusters by the Hour 

8 http://arstechnica.com/business/news/2011/09/30000-core-cluster-built-on-amazon-ec2-cloud.ars 



The Bad News: 
It is inconvenient. 
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End User Challenges 
• System Properties: 

– Wildly varying resource availability. 

– Heterogeneous resources. 

– Unpredictable preemption. 

– Unexpected resource limits. 

• User Considerations: 

– Jobs can’t run for too long... but, they can’t run too quickly, 
either! 

– I/O operations must be carefully matched to the capacity of 
clients, servers, and networks. 

– Users often do not even have access to the necessary 
information to make good choices! 



11 

I have a standard, debugged, trusted 
application that runs on my laptop. 
  
A toy problem completes in one hour. 
A real problem will take a month (I think.) 
 
Can I get a single result faster? 
Can I get more results in the same time? 

Last year, 
I heard about 
this grid thing. 

What do I do next? 

This year, 
I heard about 

this cloud thing. 



Our Philosophy: 

• Harness all the resources that are available: 
desktops, clusters, clouds, and grids. 

• Make it easy to scale up from one desktop to 
national scale infrastructure. 

• Provide familiar interfaces that make it easy to 
connect existing apps together. 

• Allow portability across operating systems, 
storage systems, middleware… 

• Make simple things easy, and complex things 
possible. 

• No special privileges required. 



An Old Idea: Makefiles 
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part1 part2 part3: input.data split.py 

     ./split.py input.data 

 

out1: part1 mysim.exe 

    ./mysim.exe part1 >out1 

 

out2: part2 mysim.exe 

    ./mysim.exe part2 >out2 

 

out3: part3 mysim.exe 

    ./mysim.exe part3 >out3 

 

result: out1 out2 out3 join.py 

    ./join.py out1 out2 out3 > result  
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Makeflow = Make + Workflow 

Makeflow 

Local Condor SGE 
Work 

Queue 

• Provides portability across batch systems. 

• Enable parallelism (but not too much!) 

• Fault tolerance at multiple scales. 

• Data and resource management. 

 

http://www.nd.edu/~ccl/software/makeflow 



Makeflow Applications 



Example: Biocompute Portal 

Generate Makefile 

Make 
flow 

Run 
Workflow 

Progress 
Bar 

Transaction 
Log 

Update 
Status 

Condor 
Pool 

Submit 
Tasks 

BLAST 
SSAHA 
SHRIMP 
EST 
MAKER 
… 



Generating Workflows with Weaver 

db     = SQLDataSet('db', 'biometrics', 'irises'); 

irises = Query(db,color==‘Blue’) 

 

iris_to_bit  = SimpleFunction('convert_iris_to_template‘) 

compare_bits = SimpleFunction('compare_iris_templates') 

 

bits = Map(iris_to_bit, irises) 

AllPairs(compare_bits, bits, bits, output='scores.txt') 

 

SQL 
DB 

I1 

I2 

I3 

F 

F 

F 

T1 

T2 

T3 

S11 

S21 

S31 

S12 

S22 

S32 

S13 

S23 

S33 

Query 
Map All-Pairs 



Weaver + Makeflow + Batch System 

• A good starting point: 

– Simple representation is easy to pick up. 

– Value provided by DAG analysis tools. 

– Easy to move apps between batch systems. 

•  But, the shared filesystem remains a problem. 

– Relaxed consistency confuses the coordinator. 

– Too easy for Makeflow to overload the FS. 

• And the batch system was designed for large jobs. 

– Nobody likes seeing 1M entries in qstat. 

– 30-second rule applies to most batch systems 
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worker 

worker 
worker 

worker 
worker 

worker 
worker 

T In.txt out.txt 

put P.exe 
put in.txt 
exec P.exe <in.txt >out.txt 
get out.txt 

1000s of workers 
dispatched to 
clusters, clouds, and 
grids 

Work Queue System  

Work Queue Library 

Work Queue Program 
C / Python / Perl 

http://www.nd.edu/~ccl/software/workqueue 



Private 
Cluster 

Campus 
Condor 

Pool 

Public 
Cloud 

Provider 

Shared 
SGE 

Cluster 

Makefile 

Makeflow 

Local Files and 
Programs 

Makeflow + Work Queue 
sge_submit_workers  

W 

W 

W 

ssh 

W W 

W W 

W 

W

v 

W 

condor_submit_workers  

W 

W 

W 

Hundreds of 
Workers in a 

Personal Cloud 

submit 
tasks 



Managing Your Workforce 

Torque 
Cluster 

Master 
A 

Master 
B 

Master 
C 

Condor 
Pool 

W 

W 

W 

W 

W 
W 

Submits new workers. 
Restarts failed workers. 
Removes unneeded workers. 

WQ 
Pool 

200 

work_queue_pool –T condor 

WQ 
Pool 

200 

work_queue_pool –T torque 

500 

W 

W 

W 

0 



Private 
Cluster 

Campus 
Condor 

Pool 

Public 
Cloud 

Provider 

Shared 
SGE 

Cluster 

Makefile 

Makeflow 

Local Files and 
Programs 

Hierarchical Work Queue 
sge_submit_workers  

W 

W 

W 

ssh 

W 

W W 

W 

W 

F 

condor_submit_workers  

W 

W 

W 

F F 

F 
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Work Queue Library 

http://www.nd.edu/~ccl/software/workqueue 

#include  “work_queue.h” 
 
while( not done ) { 
 
      while (more work ready) { 
           task = work_queue_task_create(); 
            // add some details to the task 
            work_queue_submit(queue, task); 
      } 
 
      task = work_queue_wait(queue); 
      // process the completed task 
} 



Adaptive Weighted Ensemble 
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Proteins fold into a number of distinctive states, each of 
which affects its function in the organism. 

How common is each state? 
How does the protein transition between states? 

How common are those transitions? 
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Simplified Algorithm: 

– Submit N short simulations in various states. 

– Wait for them to finish. 

– When done, record all state transitions. 

– If too many are in one state, redistribute them. 

– Stop if enough data has been collected. 

– Continue back at step 2. 

AWE Using Work Queue 
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AWE on Clusters, Clouds, and Grids 



New Pathway Found! 
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Credit: Joint work in progress with Badi Abdul-Wahid, Dinesh Rajan, Haoyun Feng, Jesus 
Izaguirre, and Eric Darve. 



Software as a Social Lever 

• User and app accustomed to a particular system 
with standalone executables. 

• Introduce Makeflow as an aid for expression, 
debugging, performance monitoring. 

• When ready, use Makeflow + Work Queue to gain 
more direct control of I/O operations on the 
existing cluster. 

• When ready, deploy Work Queue to multiple 
systems across the wide area. 

• When ready, write new apps to target the Work 
Queue API directly. 



Overview 

• Experience with Concurrent Applications 
– Makeflow, Weaver, Work Queue 

• Thesis: Convergence of Models 
– Declarative Language 

– Directed Graphs of Tasks and Data 

– Shared Nothing Architecture 

• Open Problems 
– Transaction Granularity 

– Where to Parallelize? 

– Resource Management  

• Concluding Thoughts 



Scalable Computing Model 

for x in list f(g(x)) 

Weaver 

B 4 

A 

C 

1 

2 

3 

D 

E 

F 

Makeflow 

1 A D 

3 C F 

Work Queue 

A 

C 

D 

E 
F G 

Shared-Nothing Cluster 



Scalable Computing Model 

for x in list f(g(x)) 

Declarative Language 

B 4 

A 

C 

1 

2 

3 

D 

E 

F 

Dependency Graph 

1 A D 

3 C F 

Independent Tasks 

A 

C 

D 

E 
F G 

Shared-Nothing Cluster 



Convergence of Worlds 

• Scientific Computing 
– Weaver, Makeflow, Work Queue, Cluster 
– Pegasus, DAGMan, Condor, Cluster 
– Swift-K, (?), Karajan, Cluster 

• High Performance Computing 
– SMPSS->JDF->DAGue->NUMA Architecture 
– Swift-T, (?), Turbine, MPI Application 

• Databases and Clouds 
– Pig, Map-Reduce, Hadoop, HDFS 
– JSON, Map-Reduce, MongoDB, Storage Cluster 
– LINQ, Dryad, Map-Reduce, Storage Cluster 

 



Thoughts on the Layers 
• Declarative languages. 

– Pros: Compact, expressive, easy to use. 
– Cons: Intractable to analyze in the general case. 

• Directed graphs. 
– Pros: Finite structures with discrete components are easily 

analyzed. 
– Cons: Cannot represent dynamic applications. 

• Independent tasks and data. 
– Pros: Simple submit/wait APIs, data dependencies can be 

exploited by layers above below. 
– Cons: In most general case, scheduling is intractable. 

• Shared-nothing clusters. 
– Pros: Can support many disparate systems.  Performance is 

readily apparent. 
– Cons: requires knowledge of dependencies. 



Common Model of Compilers 

• Scanner detects single tokens. 
– Finite state machine is fast and compact. 

• Parser detects syntactic elements. 
– Grammar + push down automata.  LL(k), LR(k) 

• Abstract syntax tree for semantic analysis. 
– Type analysis and high level optimization. 

• Intermediate Representation 
– Register allocation and low level optimization. 

• Assembly Language 
– Generated by tree-matching algorithm. 



Overview 

• Experience with Concurrent Applications 
– Makeflow, Weaver, Work Queue 

• Thesis: Convergence of Models 
– Declarative Language 

– Directed Graphs of Tasks and Data 

– Shared Nothing Architecture 

• Open Problems 
– Transaction Granularity 

– Where to Parallelize? 

– Resource Management  

• Concluding Thoughts 



Observation: 
 

Generating parallelism is easy but 
making it predictable is hard! 



Challenge: Transaction Granularity 

• Commit every action to disk.  (Condor) 

+ Makes recovery from any point possible. 

- Significant overhead on small tasks. 

• Commit only completed tasks to disk. (Falkon) 

- Cannot recover tasks in progress after a failure. 

+ Fast for very small tasks. 

- Extreme: Commit only completed DAG. 

- Problem: Choice changes with workload! 

 



Challenge: Where to Parallelize? 

F(x) 

DAG 

Queue 

W W W 

F(x) 

DAG 

W W W 

Q Q Q 

F(x) 

W W W 

Q Q Q 

D D D 

F(x) 

W W W 

Q Q Q 

F(x) F(x) F(x) 

D D D 



Challenge: Resource Management 



The Ideal Picture 

X 1000 



What actually happens: 

1 TB 

GPU 

3M files 
of 1K each 

128 
GB X 1000 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=TSgVVrfg2fU3aM&tbnid=bbdpVtxxta9sPM:&ved=0CAUQjRw&url=http://hdw.eweb4.com/out/789146.html&ei=0T6BUZzfM-f62gW-noGQAw&bvm=bv.45921128,d.b2I&psig=AFQjCNFH4mZ-ap0lwcmXZVHKV_qTNxbZ4g&ust=1367511072608940


Some reasonable questions: 

• Will this workload at all on machine X? 

• How many workloads can I run simultaneously 
without running out of storage space? 

• Did this workload actually behave as expected 
when run on a new machine? 

• How is run X different from run Y? 

• If my workload wasn’t able to run on this 
machine, where can I run it? 



End users have no idea what resources 
their applications actually need. 

and… 

Computer systems are terrible at 
describing their capabilities and limits. 

and… 

They don’t know when to say NO. 



dV/dt : Accelerating the Rate of Progress 
Towards Extreme Scale Collaborative Science 

 
Miron Livny (UW), Ewa Deelman (USC/ISI), Douglas Thain (ND), 

Frank Wuerthwein (UCSD), Bill Allcock (ANL) 

… make it easier for scientists to conduct large-
scale computational tasks that use the power 
of computing resources they do not own to 
process data they did not collect with 
applications they did not develop … 



B1 

B2 

B3 

A1 A2 A3 

F 
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C D E 

8 9 10 

A 

Dynamic Workloads 

while( more work to do) 
{ 
     foreach work unit { 
        t = create_task(); 
        submit_task(t); 
     } 
 
     t = wait_for_task(); 
     process_result(t); 
} 

Static Workloads 

Concurrent Workloads 

Categories of Applications 

F F F 

F 

F F 

F F 



Data Collection and Modeling 

RAM: 50M 
Disk:  1G  
CPU:   4 C 

monitor 

task 

workflow 

typ max min 

P 
RAM 

A    

B C 

D E 

F 

Workflow Schedule 

A 

C 

F 

B D E 

Workflow Structure Workflow Profile 

Task Profile 
Records From 

Many Tasks Task Record 

RAM: 50M 
Disk:  1G  
CPU:   4 C 

RAM: 50M 
Disk:  1G  
CPU:   4 C 

RAM: 50M 
Disk:  1G  
CPU:   4 C 



Portable Resource Management 

Work 
Queue 

while( more work to do) { 
     foreach work unit { 
        t = create_task(); 
        submit_task(t); 
     } 
 
     t = wait_for_task(); 
     process_result(t); 
} 

RM 

Task 

W 

W 

W 

task 1 details: 
   cpu, ram, disk 
task 2 details: 
   cpu, ram, disk 
task 3 details: 
   cpu, ram, disk 

Pegasus RM 

Task 

Job-1.res 
Job-2.res 

job-3.res 

Makeflow 
other 
batch 

system 
RM 

Task 

rule-1.res 
Jrule2.res 

rule-3.res 

http://research.cs.wisc.edu/htcondor/index.html
http://www3.nd.edu/~ccl/workflows/bwa/


Completing the Cycle 

task 

typ max min 

P 
RAM 

CPU: 10s 
RAM: 16GB 
DISK: 100GB 

task 

RM 

Allocate Resources 

Historical Repository 

CPU: 5s 
RAM: 15GB 
DISK: 90GB 

Observed Resources 

Measurement 
and Enforcement 

Exception Handling 
Is it an outlier? 



Complete Workload Characterization 

X 1000 

128 GB 
32 cores 

16 GB 
4 cores 

X 1 X 100 

1 hour 
5 Tb/s I/O 

128 GB 
32 cores 

16 GB 
4 cores 

X 1 X 10 

12 hours 
500 Gb/s I/O 

We can approach the question: 
Can it run on this particular machine? 

What machines could it run on? 



At what levels of the model can 
resource management be done? 
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Scalable Computing Model 

for x in list f(g(x)) 
B 4 

A 

C 

1 

2 

3 

1 A D 

3 C F 

D 

E 

F 

A 

C 

D 

E 
F G 

Weaver 

Makeflow 

Work Queue Master 

Work Queue 
Workers 



An exciting time to work 
in distributed systems! 



Talks by CCL Students This Weekend 

• Casey Robinson, 
Automated Packaging of Bioinformatics 
Workflows for Portability and Durability 
Using Makeflow, 
WORKS Workshop, 4pm on Sunday. 

• Patrick Donnelly, 
Design of an Active Storage Cluster File 
System for DAG Workflows, 
DISCS Workshop on Monday. 
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