
 
 

www.ci.anl.gov 
www.ci.uchicago.edu 

Application Skeletons: 

Encapsulating MTC Application 

Task Computation and I/O 
Daniel S. Katz and Zhao Zhang 



www.ci.anl.gov 
www.ci.uchicago.edu 

2 

Motivation 

Å Computer scientists who build tools and systems need to 

work on real scientific applications to prove the effectiveness 

of  their tools and systems  

ï And often vary them ð change problem size, etc. 

Å However, accessing and building real applications can be 

hard (and isnõt really the core of their work) 

ï Some applications (source) are privately accessible 

ï Some data is difficult to access 

ï Some applications use legacy code and are dependent on out-of-date 

libraries 

ï Some applications are hard to understand without domain science 

expertise 

 



www.ci.anl.gov 
www.ci.uchicago.edu 

3 

Target 

Å We want to build a tool so that 

ï Users can quickly and easily produce a synthetic distributed 

application that represents the key distributed characteristics of  a 

real application 

o The synthetic application should have runtime, I/O, and intertask 

communication that are similar to those of  the real application 

ï The synthetic application is easy to run in a distributed environment: 

grids, clusters, and clouds 

ï The synthetic application should be executable with common 

distributed computing middleware (e.g., Swift and Pegasus) as well 

as the ubiquitous Unix shell 

 

 



www.ci.anl.gov 
www.ci.uchicago.edu 

4 

Classes of  Distributed Applications 

Å Bag of  Tasks: a set of  independent tasks 

Å MapReduce: a set of  distributed application with key-value 

pairs as intermediate data format 

Å Iterative MapReduce: MapReduce application with iteration 

requirement 

Å Campaign: an iterative application with a varying set of  tasks 

that must be run to completion in each iteration 

Å Multi -stage Workflow: a set of distributed applications 

with multiple stages that use POSIX files as intermediate 

data format 

Å Concurrent Tasks: a set of  tasks that have to be executed at 

the same time 

 



www.ci.anl.gov 
www.ci.uchicago.edu 

5 

Challenge 

Å Balance the easy of  programming and usage with the 

performance gap between Skeleton applications and real 

applications 

 
E

a
s
e
 o

f  
P

ro
g
ra

m
m

in
g

Performance DifferenceSmall Large

E
a

s
y

H
a

rd

Real App

Skeleton 

App

Simple 

Model



www.ci.anl.gov 
www.ci.uchicago.edu 

6 

An Multi-Stage Application Example 

ÅApplication have stages 

ÅEach stage has tasks 
ï Task have lengths 

ÅEach stage has 

input/output files  
ï Input/Output  files have sizes 

ï Input files map to tasks 

ï Input files can be (pre) existing 

files or Output files from previous 

stages 



www.ci.anl.gov 
www.ci.uchicago.edu 

7 

Skeleton Abstraction 

ÅApplication Skeletons abstract an application using a 

top-down approach: an application is composed of  

stages, each of  which is composed of  tasks. 

ÅAn application can be defined by a configuration file 

containing: 

ïNumber of  stages 

ïFor each stage 

o Tasks (number and length) 

o Input files (number, sizes, and mapping to tasks) 

o Output files (number, sizes) 

 



www.ci.anl.gov 
www.ci.uchicago.edu 

8 

Skeleton Tool Design 

ÅThe Skeleton tool is implemented as a parser. 

Configuration  
File 

Skeleton 

Prep 
Scripts 

Executables 

Application 
(Pegasus DAG, 
Swift Script, 

Shell commands) 



www.ci.anl.gov 
www.ci.uchicago.edu 

9 

Task Executable 

ÅThe current implementation of  task executable copies 

the input files from filesystem to RAM, sleeps for 

some amount of  time (specified as the run time), and 

copies the output files from RAM to filesystem 

ÅIssues: 

ïTask length described by run time does not reflect the CPU 

capacity 

ÅDifferent CPUs should give different performance 

ïSynthetic I/O is too simple 

ÅSingle block I/O operation may not reflect real I/O 

ïApplication structure is too simple 

ÅPerformance of  interleaved computation and I/O is missed 



www.ci.anl.gov 
www.ci.uchicago.edu 

10 

Specifying a Stage 

Parameter Format Example 

Num_Tasks Integer 16 

Task_Length dist [parameter][unit] uniform 32s 

Input_source filesystem | 
Stage_$.Output 

Stage_1.Output 

Input_Files_Each_Task Integer 2 

Tasks_Each_Input_File Integer 2 

Input_File_Size dist [parameter][unit] uniform 1048576 

Input_Task_Mapping External /path/to/exec external map.sh 

Output_Files_Each_Task Integer 2 

Output_File_Size dist [parameter][unit] uniform 1048576 

Supported distribution includes uniform, normal, triangular, and lognorm 



www.ci.anl.gov 
www.ci.uchicago.edu 

11 

A Multi-stage Workflow 

Num_Stage = 3 

Stage_Name = Stage_1 

    Num_Tasks = 4 

    Task_Length = normal [10, 1]s 

    Input_Source = filesystem       

    Input_Files_Each_Task = 2  

    Tasks_Each_Input_File = 1  

    Input_File_Size =  normal [1048576, 1]B 

    Output_Files_Each_Task = 1 

    Output_File_Size = uniform 1048576B 



www.ci.anl.gov 
www.ci.uchicago.edu 

12 

A Multi-stage Workflow 

Num_Stage = 3 

Stage_Name = Stage_2 

    Num_Tasks = 6 

    Task_Length = uniform 32s 

    Input_Source = Stage_1.Output       

    Input_Files_Each_Task = 2  

    Tasks_Each_Input_File = 3    

    Input_Task_Mapping = external mapper.sh 

    Output_Files_Each_Task = 1 

    Output_File_Size = uniform 1048576B 


