

www.ci.anl.gov
www.ci.uchicago.edu

Application Skeletons:

Encapsulating MTC Application

Task Computation and I/O
Daniel S. Katz and Zhao Zhang

www.ci.anl.gov
www.ci.uchicago.edu

2

Motivation

• Computer scientists who build tools and systems need to

work on real scientific applications to prove the effectiveness

of their tools and systems

– And often vary them – change problem size, etc.

• However, accessing and building real applications can be

hard (and isn’t really the core of their work)

– Some applications (source) are privately accessible

– Some data is difficult to access

– Some applications use legacy code and are dependent on out-of-date

libraries

– Some applications are hard to understand without domain science

expertise

www.ci.anl.gov
www.ci.uchicago.edu

3

Target

• We want to build a tool so that

– Users can quickly and easily produce a synthetic distributed

application that represents the key distributed characteristics of a

real application

o The synthetic application should have runtime, I/O, and intertask

communication that are similar to those of the real application

– The synthetic application is easy to run in a distributed environment:

grids, clusters, and clouds

– The synthetic application should be executable with common

distributed computing middleware (e.g., Swift and Pegasus) as well

as the ubiquitous Unix shell

www.ci.anl.gov
www.ci.uchicago.edu

4

Classes of Distributed Applications

• Bag of Tasks: a set of independent tasks

• MapReduce: a set of distributed application with key-value

pairs as intermediate data format

• Iterative MapReduce: MapReduce application with iteration

requirement

• Campaign: an iterative application with a varying set of tasks

that must be run to completion in each iteration

• Multi-stage Workflow: a set of distributed applications

with multiple stages that use POSIX files as intermediate

data format

• Concurrent Tasks: a set of tasks that have to be executed at

the same time

www.ci.anl.gov
www.ci.uchicago.edu

5

Challenge

• Balance the easy of programming and usage with the

performance gap between Skeleton applications and real

applications

E

a
s
e
 o

f
P

ro
g
ra

m
m

in
g

Performance DifferenceSmall Large

E
a

s
y

H
a

rd

Real App

Skeleton

App

Simple

Model

www.ci.anl.gov
www.ci.uchicago.edu

6

An Multi-Stage Application Example

• Application have stages

• Each stage has tasks
– Task have lengths

• Each stage has

input/output files
– Input/Output files have sizes

– Input files map to tasks

– Input files can be (pre) existing

files or Output files from previous

stages

www.ci.anl.gov
www.ci.uchicago.edu

7

Skeleton Abstraction

• Application Skeletons abstract an application using a

top-down approach: an application is composed of

stages, each of which is composed of tasks.

• An application can be defined by a configuration file

containing:

– Number of stages

– For each stage

o Tasks (number and length)

o Input files (number, sizes, and mapping to tasks)

o Output files (number, sizes)

www.ci.anl.gov
www.ci.uchicago.edu

8

Skeleton Tool Design

• The Skeleton tool is implemented as a parser.

Configuration
File

Skeleton

Prep
Scripts

Executables

Application
(Pegasus DAG,

Swift Script,
Shell commands)

www.ci.anl.gov
www.ci.uchicago.edu

9

Task Executable

• The current implementation of task executable copies

the input files from filesystem to RAM, sleeps for

some amount of time (specified as the run time), and

copies the output files from RAM to filesystem

• Issues:

– Task length described by run time does not reflect the CPU

capacity

• Different CPUs should give different performance

– Synthetic I/O is too simple

• Single block I/O operation may not reflect real I/O

– Application structure is too simple

• Performance of interleaved computation and I/O is missed

www.ci.anl.gov
www.ci.uchicago.edu

10

Specifying a Stage

Parameter Format Example

Num_Tasks Integer 16

Task_Length dist [parameter][unit] uniform 32s

Input_source filesystem |
Stage_$.Output

Stage_1.Output

Input_Files_Each_Task Integer 2

Tasks_Each_Input_File Integer 2

Input_File_Size dist [parameter][unit] uniform 1048576

Input_Task_Mapping External /path/to/exec external map.sh

Output_Files_Each_Task Integer 2

Output_File_Size dist [parameter][unit] uniform 1048576

Supported distribution includes uniform, normal, triangular, and lognorm

www.ci.anl.gov
www.ci.uchicago.edu

11

A Multi-stage Workflow

Num_Stage = 3

Stage_Name = Stage_1

 Num_Tasks = 4

 Task_Length = normal [10, 1]s

 Input_Source = filesystem

 Input_Files_Each_Task = 2

 Tasks_Each_Input_File = 1

 Input_File_Size = normal [1048576, 1]B

 Output_Files_Each_Task = 1

 Output_File_Size = uniform 1048576B

www.ci.anl.gov
www.ci.uchicago.edu

12

A Multi-stage Workflow

Num_Stage = 3

Stage_Name = Stage_2

 Num_Tasks = 6

 Task_Length = uniform 32s

 Input_Source = Stage_1.Output

 Input_Files_Each_Task = 2

 Tasks_Each_Input_File = 3

 Input_Task_Mapping = external mapper.sh

 Output_Files_Each_Task = 1

 Output_File_Size = uniform 1048576B

www.ci.anl.gov
www.ci.uchicago.edu

13

Mapping Inputs to Tasks

• If
 number of input files = N * number of tasks (N = 1, 2, ...)
or
 number of tasks = 1
mapping of inputs to tasks is trivial

• Otherwise, the Input_Task_Mapping option lets users specify the
mapping through a Linux executable (used for the example here)

o Example: Input_Task_Mapping = external mapper.sh

o Output of mapper.sh

– Stage_1_output_0 Stage_1_output_1

– Stage_1_output_0 Stage_1_output_2

– Stage_1_output_0 Stage_1_output_3

– ...

Social CDN -- DataCloud 2012

www.ci.anl.gov
www.ci.uchicago.edu

14

A Multi-stage Workflow

Num_Stage = 3

Stage_Name = Stage_3

 Num_Tasks = 1

 Task_Length = uniform 32s

 Input_Source = Stage_2.Output

 Input_Files_Each_Task = 6

 Tasks_Each_Input_File = 1

 Output_Files_Each_Task = 1

 Output_File_Size = uniform 1048576B

www.ci.anl.gov
www.ci.uchicago.edu

15

Skeleton Apps vs. Real Apps

• Applications:

– Case 1: a 6x6 degree image mosaic in Montage

– Case 2: the first 256 queries of NRxNR test in

BLAST

• Platform configuration:

– 64 compute nodes on IBM Blue Gene/P

– Tasks are launched with AMFS

– Each task stages input file from GPFS to RAM

disk, execute the task, then copies the output files

from RAM disk to GPFS

www.ci.anl.gov
www.ci.uchicago.edu

16

Montage Statistics

Tasks

Inputs

Outputs

In
(MB)

Out
(MB)

Time
Avg

Time
Stdev

Skeleton
Task
Length

mProject 1319 1319 2594 2800 10400 11.1 2.5 12

mImgtbl 1 1297 1 5200 0.8 N/A 0 16

mOverlaps 1 1 1 0.8 0.4 9 0 9

mDiffFit 3883 7766 7766 31000 487 1.7 0.6 2

mConcatFit 1 3883 1 1.1 4.3 14 0 14

mBgModel 1 2 1 4.5 0.07 283.1 0 284

mBackground 1297 1297 1297 5200 5200 0.4 0.08 1

mAdd 1 1297 1 5200 7400 N/A 0 519

www.ci.anl.gov
www.ci.uchicago.edu

17

Skeleton Montage Task Length

• We use average time-to-solution for mProject,

mOverlaps, mDifffit, mConcatFit, mBackground

• mImgtbl and mAdd’s input size exceeds single

RAM disk, so we can not measure the time-to-

solution with data in RAM disk

• However, we observe that these tasks’ time-to-

solution is proportional to the number of input

files when the number of input files is small, so

we project the time-to-solution with the full input

data set based on the measured time-to-solution.

www.ci.anl.gov
www.ci.uchicago.edu

18

Skeleton Montage vs. Real Montage

m
P

ro
je

ct

m
Im

gt
b

l

m
O

ve
rl

ap
s

m
D

if
ff

it

m
C

o
n

ca
tF

it

m
B

gM
o

d
e

l

m
B

ac
kg

ro
u

n
d

m
A

d
d

To
ta

l

Montage 290.4 139.7 10.2 359.2 64.6 283.3 102.6 793.4 2040.6

Skeleton 283.4 124.3 10.5 313.5 67.0 283.2 98.2 807.6 1987.6

Error -2.4% -11.1% 2.9% -12.7% 3.9% -0.04% -4.3% 1.8% -2.6%

www.ci.anl.gov
www.ci.uchicago.edu

19

BLAST Statistics

Social CDN -- DataCloud 2012

Tasks

Inputs

Outputs

In
(MB)

Out
(MB)

Time
Avg

Time
Stdev

Skeleton
Task
Lenth

formatdb 64 64 192 3800 4400 41.9 0.1 42

blastp 1024 4096 1024 70402 966 109.2 14.9 110

merge 16 1024 16 966 867 4.4 4.1 real
length

www.ci.anl.gov
www.ci.uchicago.edu

20

Skeleton BLAST vs. Real BLAST

Social CDN -- DataCloud 2012

formatdb blastp merge Total

BLAST 82.1 1996.3 35.9 2114.3

Skeleton 76.2 1835.9 34.0 1946.1

Error -7.2% -8.0% -2.9% -8.0%

www.ci.anl.gov
www.ci.uchicago.edu

21

Conclusion

• The Skeleton tool can produce synthetic distributed

applications that capture important distributed properties of

real applications

• The Skeleton tool is simpler to use than real applications

• The Skeleton tool can generate applications that represent

bag-of-tasks, MapReduce, and multi-stage workflows

• Skeleton applications can be run with mainstream workflow

frameworks and systems: Shell, Pegasus, and Swift

• The execution comparison between the initial Skeleton

Montage and BLAST against the real applications shows an

acceptable difference of 2.6% and 8.0%

• At the stage level, the difference ranges from 0.04% to 12.7%,

with six out of eleven stages within 5%

Social CDN -- DataCloud 2012

www.ci.anl.gov
www.ci.uchicago.edu

22

Future Work

• Near term plan:

– Open source the Skeleton code with documentation

– Invite users and contributors from the community

• Longer term plan:

– User application trace data to (help) produce synthetic applications

– Determine a way to represent the computational work in a task that

when combined with a particular platform can give an accurate

runtime for that task

– Better support tasks with interleaved computation and I/O

– Support tasks that are not generic single core tasks, such as those that

internally include OpenMP or MPI

– Support concurrent tasks that need to run at the same time

– Investigate a better task-file mapping specification

Social CDN -- DataCloud 2012

www.ci.anl.gov
www.ci.uchicago.edu

23

Acknowledgements

• This work was supported in part by the U.S.
Department of Energy under the ASCR award DE-
SC0008617 (the AIMES project)

• It has benefited from discussions with Shantenu Jha,
Andre Merzky, Matteo Turilli, Jon Weissman, and
Lavanya Ramakrishnan

• Computing resources were provided by the Argonne
Leadership Computing Facility

• Work by Katz was supported by the National Science
Foundation while working at the Foundation. Any
opinion, nding, and conclusions or recommendations
expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation.

Social CDN -- DataCloud 2012

www.ci.anl.gov
www.ci.uchicago.edu

24

Thanks!

• Questions?

Social CDN -- DataCloud 2012

