
A Hybrid Scheduling Approach for Scalable
Heterogeneous Hadoop Systems

Aysan Rasooli
Department of Computing and Software

McMaster University
Hamilton, Canada

Email: rasooa@mcmaster.ca

Douglas G. Down
Department of Computing and Software

McMaster University
Hamilton, Canada

Email: downd@mcmaster.ca

Abstract—The scalability of Cloud infrastructures has signifi-
cantly increased their applicability. Hadoop, which works based
on a MapReduce model, provides for efficient processing of
Big Data. This solution is being used widely by most Cloud
providers. Hadoop schedulers are critical elements for providing
desired performance levels. A scheduler assigns MapReduce
tasks to Hadoop resources. There is a considerable challenge
to schedule the growing number of tasks and resources in a
scalable manner. Moreover, the potential heterogeneous nature
of deployed Hadoop systems tends to increase this challenge.
This paper analyzes the performance of widely used Hadoop
schedulers including FIFO and Fair sharing and compares
them with the COSHH (Classification and Optimization based
Scheduler for Heterogeneous Hadoop) scheduler, which has been
developed by the authors. Based on our insights, a hybrid solution
is introduced, which selects appropriate scheduling algorithms for
scalable and heterogeneous Hadoop systems with respect to the
number of incoming jobs and available resources.

I. INTRODUCTION

Cloud computing promises three distinct characteristics:
elastic scalability, pay as you go, and manageability [1]. The
advantages of Cloud computing have led to a significant
increase in diversity and scale of cloud applications. One
of the fastest growing applications is processing Big Data
[2]. The scalability and fault tolerance in Cloud computing
makes it a great solution for these applications. However,
the huge storage and processing requirements of Big Data
applications make it extremely challenging to provide the
desired performance level for these applications.

Hadoop [3] is a cross-platform framework which supports
data intensive distributed cloud applications with a focus on
data processing. Hadoop is designed based on the MapReduce
[4] programming model. This model divides the applications
into several small tasks to be distributed and executed on the
Hadoop resources. The goal of Hadoop is to offer efficient and
high performance processing of Big Data applications.

A Hadoop scheduler is a critical element to provide the
desired performance level for Hadoop users and providers.
Schedulers are responsible for assigning the incoming tasks
to available resources. However, there are various issues
in Hadoop which can directly affect the performance of
schedulers, such as heterogeneity and the number of jobs
and resources. These issues have been undervalued by most

proposed Hadoop schedulers, and as a result can lead to poor
performance.

A common enterprise practice is to have a private Hadoop
system installed on an intranet. In these Hadoop systems, the
jobs and resources may change significantly during a day. As
our experiments show, a single scheduling algorithm may not
provide the best performance in terms of average completion
time. This paper proposes a hybrid approach which uses
alternative scheduling algorithms for specific situations. This
approach considers average completion time for submitted
jobs as the main performance metric. The proposed hybrid
scheduler is based on three Hadoop schedulers: FIFO, Fair
Sharing [5], and COSHH [6]. The FIFO and Fair Sharing
algorithms are the two best known and most widely used
Hadoop schedulers. The COSHH algorithm (introduced by the
authors of this article), is a Hadoop scheduler which considers
the heterogeneity of the system. The hybrid scheduler chooses
the best scheduling algorithm for different scales of jobs and
resources to address average completion time and fairness.

The remainder of this paper is organized as follows. In
Section II, the background for this research is presented.
Section III presents important performance issues that Hadoop
schedulers should consider for scalable and heterogeneous
Hadoop systems. Section IV presents experimental results and
analysis of the schedulers. The proposed hybrid solution is
introduced and analyzed in Section V. In Section VI, related
work is discussed. Finally, conclusions and future work are
provided in the last section.

II. BACKGROUND

Hadoop is a data-intensive cluster computing system, in
which incoming jobs are developed using the MapReduce
programming model.

A. Hadoop System

A Hadoop cluster is a group of linked resources, where
each resource (Rj) has a computation unit and a data storage
unit. The computation unit consists of a set of slots, where
each slot has a given execution rate. Similarly, the data storage
unit has a given capacity and data retrieval rate. Data in the
Hadoop system is organized into files, which are usually large.
Each file is split into small pieces, which are called slices



(usually, all slices in a system have the same size). Hadoop
assigns a priority and a minimum share to each user based on
a particular policy (e.g. the pricing policy in [7]). The user’s
minimum share is the minimum number of slots guaranteed
for the user at each point in time. The users submit jobs to
the system, defined as follows:
• Each job (Ji) in the system consists of a number of map

tasks and reduce tasks.
• A map task performs a process on the slice where

the required data of the task is located. A reduce task
processes the results of a subset of a job’s map tasks.
m(Ji, Rj) defines the mean execution time of job Ji on
resource Rj .

• Investigations on real Hadoop workloads show that it is
possible to classify workloads into classes of “common
jobs” [8]. We define the class of jobs (Ck) to be the set
of jobs whose mean execution times (on each resource)
are the same.

B. Scalability and Heterogeneity in Hadoop Systems

Hadoop heterogeneity can be categorized at three levels:
cluster, workload, and users, as follows.
• Workload: incoming jobs are heterogeneous regarding

various features such as number of tasks, data and
computation requirements, arrival rates, and execution
times. Reported analysis on Hadoop systems found their
workloads extremely heterogeneous with very different
execution times [9]. Moreover, the number of small jobs
(with short execution times) exceeds larger size jobs in
typical Hadoop workloads such as the Facebook and
Cloudera workloads discussed in [9].

• Clusters: resources have different capabilities such as data
storage and processing units.

• Users: assigned priorities and minimum share require-
ments differ between users. Moreover, the type and
number of jobs assigned by each user can be different.

Most enterprise Hadoops have a higher load during the day,
decreasing during the evening. Similarly, the resource numbers
are subject to change at different times. Consequently, using
a non-scalable Hadoop system could lead to resource under-
utilization during evenings or resource overloading and poor
performance during peak hours. Scalability in Cloud makes
it possible for Hadoop systems to scale up and down based
on the load to improve the utilization. A scalable Hadoop
considers both job number and complexity as well as the
number of available resources to provide sufficient flexibility
to adapt. Selecting an appropriate scheduling algorithm for
such a scalable heterogeneous Hadoop system is critical to
achieve a desired performance level.

C. Hadoop Schedulers

There are various Hadoop schedulers, where each scheduler
addresses one or more performance metrics. However, to the
best of our knowledge there is no scheduling algorithm which
optimizes all these metrics together (see Section II-D below
for a list of these metrics). In some cases, optimizing one

metric can result in significant degradation in another metric.
For instance, a scheduler which optimizes fairness, needs to
repeatedly switch the processor between different jobs. This
can add significant overhead, which can result in larger average
completion times.

To analyze the behaviour of Hadoop schedulers in different
Hadoop configurations, this paper uses three Hadoop schedul-
ing algorithms: FIFO, Fair Sharing, and COSHH. The FIFO
and Fair Sharing algorithms are used as the basis of a majority
of Hadoop schedulers [5, 10, 7, 11]. The COSHH algorithm
was first introduced in [6], and considers the system informa-
tion in making scheduling decisions. Consequently, COSHH
is used as a representative of scheduling algorithms which
consider heterogeneity at both the resource and workload
levels. In the following, we briefly introduce these Hadoop
schedulers.

FIFO is the default Hadoop scheduler [4]. It orders the
jobs in a queue based on their arrival times, ignoring any
heterogeneity in the system. The experience from deploying
Hadoop in large systems shows basic scheduling algorithms
like FIFO can cause severe performance degradation; particu-
larly in systems that share data among multiple users [1].

Fair Sharing is a Hadoop scheduler introduced to address
the shortcomings of FIFO, when dealing with small jobs and
user heterogeneity [5]. This scheduler defines a pool for each
user, where each pool consists of a number of map and reduce
slots on a resource. Each user can use its pool to execute her
jobs. If a pool of a user becomes idle, the slots of the pool
are divided among other users. This scheduler aims to assign
a fair share to each user, which means resources are assigned
to jobs such that all users get, on average, an equal share of
resources over time.

COSHH1 is a Hadoop scheduler which considers system
and user heterogeneity in making scheduling decisions [6].
Using the system information, COSHH classifies incoming
jobs and finds a matching of the job classes to the resources
based on the requirements of the job classes and features of
the resources. This algorithm solves a Linear Programming
problem (LP) to find an appropriate matching of jobs and
resources. At the time of a scheduling decision, the COSHH
algorithm uses the set of suggested job classes for each
resource, and considers the priority, required minimum share,
and fair share of users to make a scheduling decision.

D. Performance Metrics

Performance of a Hadoop system can be measured by
different metrics, where the five most important ones are as
follows:

1) Average Completion T ime is the average completion
time of all completed jobs.

2) Dissatisfaction measures how much the scheduling
algorithm is successful in satisfying the minimum share
requirements of the users.

1While the name COSHH was not introduced in [6], it is adopted later.



3) Fairness measures how fair a scheduling algorithm is
in dividing the resources among users. A fair algorithm
gives the same share of resources to users with equal
priority. However, when the priorities are not equal, then
a user’s share should be proportional to their weight.

4) Locality is defined as the proportion of tasks which are
running locally on the resource that contains their stored
data. Hadoop systems deal with large data volumes.
Consequently, a mapper and reducer which processes
Big Data can have significant communication costs if
locality is neglected. A map task is defined to be local
on a resource R, if it is running on resource R, and its
required slice is also stored on resource R.

5) Scheduling T ime is the total time spent for scheduling
all of the incoming jobs. This metric measures the
overhead of each Hadoop scheduler.

As optimizing one metric can result in significant degra-
dation in the other, it should be noted that optimizing all
Hadoop performance metrics together is typically impossible.
Therefore, in this paper, we consider the average completion
time as the main metric, while considering impact on fairness
and overhead of scheduling.

III. PERFORMANCE ISSUES

This section analyzes the main drawbacks of each scheduler
in a scalable and heterogeneous Hadoop system. For this pur-
pose, this paper uses an example system, which includes four
heterogeneous resources and three users with the following
characteristics (the choice of system size is only for ease of
presentation, the same issues arise in larger systems):
• Task1, Task2, and Task3 represent three heterogeneous

task types with the following mean execution times:

mt =

24 2.5 2.5 10 10
2.5 2.5 5 5
10 10 2.5 2.5

35
Here, mt(Ti, Rj) is the execution time of task Ti on
resource Rj .

• Three users submit three jobs to the system, where each
job consists of a number of similar tasks. Jobs arrive to
the system in the order: Job1, Job2, Job3.

• Users are homogeneous with zero minimum share and a
priority equal to one. Each user submits one job to the
system as follows:

User1: Job1 (consists of 10 Task1)
User2: Job3 (consists of 10 Task3)
User3: Job2 (consists of 5 Task2)

Figure 1 shows the job assignments for FIFO, Fair Sharing,
and COSHH schedulers. The completion time of the last task
in each job is highlighted to show the overall job completion
times. The remainder of this section discusses some of the
scheduling challenges in this system.

A. Problem I. Small Jobs Starvation

The FIFO algorithm assigns incoming jobs to the resources
based on their arrival times (Figure 1a). Consequently in the
FIFO scheduler, execution of the smaller job (Job2) will be
delayed significantly. In a heterogeneous Hadoop workload,

Fig. 1. Job assignment by a)FIFO, b)Fair Sharing, and c)COSHH
schedulers, and their average completion times for the heterogeneous
Hadoop example.

jobs have different execution times. For such workloads, as
the FIFO algorithm does not take into account job sizes, it
has the problem that small jobs potentially get stuck behind
large ones.

The Fair Sharing and the COSHH algorithms do not have
this problem. Fair Sharing puts the jobs in different pools
based on their sizes, and assigns a fair share to each pool.
As a result, the Fair Sharing algorithm executes different size
jobs in parallel. The COSHH algorithm assigns the jobs to
the resources based on the job sizes and the execution rates
of resources. As a result, it can avoid this problem.

B. Problem II. Sticky Slots

Figure 1b shows the job-resource assignment for the Fair
Sharing algorithm. As the users are homogeneous, the Fair
Sharing scheduler goes through all of the users’ pools, and
assigns a slot to one user at each heartbeat. Upon completion
of a task, the free slot is assigned to a new task of the same
user to preserve fairness among users.

Resource 2 is an inefficient choice for Job3 with respect to
the completion time, but the Fair Sharing scheduler assigns
this job to this resource multiple times. There is a similar
problem for Job1 assigned to resources 3 and 4. Consequently,
the average completion times will be increased.

This problem arises when the scheduler assigns a job to the
same resource at each heartbeat. The problem is first men-



tioned in [5] for the Fair Sharing algorithm, where the authors
considered the effect of this problem on locality. However,
our example shows Sticky Slots can also significantly increase
the average completion times, when an inefficient resource is
selected for a job.

The FIFO algorithm does not have this problem because
it only considers the arrival times in making scheduling
decisions. The COSHH algorithm has two levels of classifica-
tion, which avoids the Sticky Slot problem. Moreover, as the
COSHH algorithm matches the job classes to resources with
respect to heterogeneity, even if the Sticky Slot issue arises
for this algorithm, it will assign a job class to an appropriate
resource.

C. Problem III. Resource and Job Mismatch

In a heterogeneous Hadoop system, resources can have
different features with respect to their computation or storage
units. Moreover, jobs in a heterogeneous workload have differ-
ent requirements. To reduce the average completion time, it is
critical to assign the jobs to resources by considering resource
features and job requirements.

The FIFO and the Fair Sharing algorithms both have the
problem of resource and job mismatch, as they do not consider
heterogeneity in the scheduling. On the other hand, Figure
1c shows that the COSHH algorithm achieves the minimum
average completion time (compared to the other algorithms)
by applying the following process.

The COSHH algorithm classifies the jobs into three classes:
Class1, Class2, and Class3, which contain Job1, Job2, and
Job3, respectively. This scheduler solves a Linear Program-
ming problem (LP) to find the best set of suggested job classes
for each resource, as follows.

Resource1: {Class1, Class2}
Resource2: {Class1, Class2}
Resource3: {Class2, Class3}
Resource4: {Class2, Class3}

After computing the suggested sets, the COSHH scheduler
considers fairness and minimum share satisfaction to assign
a job to a resource. Although the COSHH algorithm assigns
Job1 exclusively to Resource1 (Sticky Slot Problem), it does
not increase the completion time of Job1. The reason is that
COSHH considers the execution times of jobs on resources
in selecting Resource1 for Job1. This is one of the main
advantages of the COSHH algorithm over FIFO and Fair-
Sharing in a heterogeneous system.

IV. ANALYSIS

This section analyzes the performance of the schedulers
for a real Hadoop workload in a scalable and heterogeneous
environment. The result of this analysis is the justification of
a hybrid approach to scheduling. Our experiments include two
heterogeneous Hadoop systems: one with a varying number of
jobs and one with a varying number of resources.

A. Experimental Environment

The processed workloads include Yahoo! production
Hadoop MapReduce traces [8]. The trace is from a cluster

at Yahoo!, covering three weeks in late February/early March
2009. It contains a list of job submission and completion times,
data sizes of the input, shuffle and output stages, and the
running time for the map and reduce functions. Moreover,
[8] performs an analysis of the trace to provide classes of
“common jobs” using k-means clustering. Table I shows the
characteristics of these workloads. MRSIM [12] is used as the
MapReduce simulator in these experiments.

It should be clarified that we define the size of jobs based
on their execution times reported in [8]. In the experiments, by
“small jobs” and “large jobs” we mean the “Small jobs” and
“Large data summary” classes in the Yahoo! workload. The
default number of jobs is 100, which is sufficient to contain
a variety of the behaviours in our Hadoop workload. There
are eight users in the experiments with zero minimum shares,
and priorities equal to one. The Hadoop block size is set to
128MB, which is the default size in Hadoop 0.21. We set the
data replication number to three in all algorithms.

B. Case Study 1: Job Number Scalability

A heterogeneous cluster of six resources (Table II) is used,
where the bandwidth between resources is 100 Mbps.

Resources Slot Memory
slot# execRate Capacity RetriveRate

R1 2 5MHz 4TB 9Gbps
R2 16 500MHz 400KB 40Kbps
R3 16 500MHz 4TB 9Gbps
R4 2 5MHz 4TB 9Gbps
R5 16 500MHz 400KB 40Kbps
R6 2 5MHz 400KB 40Kbps

TABLE II
EXPERIMENTAL RESOURCES

First, to measure the performance of the schedulers in an
under-loaded system, a Hadoop system with 5 jobs in its
workload was evaluated. Then, we ran multiple experiments by
increasing the total job number in the workload to investigate
how performance scales with the number of jobs.

Figure 2(i) shows the average completion times for these ex-
periments. Based on the results, when there is a small number
of jobs in the workload, and the system is very lightly loaded,
the COSHH algorithm has the highest average completion
time. This trend continues until the number of submitted jobs
reaches the total number of slots in the system (there are 31
map slots and 23 reduce slots on all six resources). After there
are around 30 jobs in the workload, the system load reaches
the point where all of the submitted jobs can not receive their
required slots in the first scheduling round. Therefore, they
must wait until a slot becomes available. From this point on,
the improvement in average completion time for the COSHH
algorithm overcomes its scheduling overhead, and its average
completion time is better than the other algorithms. Moreover,
at around 30 jobs, the largest size jobs enter the system, which
leads to a considerable increase in the average completion
times for all of the schedulers.

The average completion time for the Fair Sharing algorithm
is initially low. However, once the load in the system increases,
and submitted jobs need to be assigned to resources at different
heartbeats, its average completion time increases. This is



Job Categories Duration (sec) Job Input Shuffle Output Map Time Reduce Time
Small jobs 60 114 174 MB 73MB 6MB 412 740
Fast aggregate 2100 23 568 GB 76GB 3.9GB 270376 589385
Expand and aggregate 2400 10 206 GB 1.5TB 133MB 983998 1425941
Transform expand 9300 5 806 GB 235GB 10TB 257567 979181
Data summary 13500 7 4.9 TB 78GB 775MB 4481926 1663358
Large data summary 30900 4 31 TB 937GB 475MB 33606055 31884004
Data transform 3600 36 36 GB 15GB 4.0GB 15021 13614
Large data transform 16800 1 5.5 TB 10TB 2.5TB 7729409 8305880

TABLE I
JOB CATEGORIES IN YAHOO! TRACE. MAP TIME AND REDUCE TIME ARE IN TASK-SECONDS, E.G., 2 TASKS OF 10 SECONDS EACH IS 20

TASK-SECONDS [8].

because at each heartbeat, the Fair Sharing algorithm needs
to perform sorting and searching over a large sort and search
space. Moreover, the Sticky Slot problem and Resource and
Job Mismatch (caused by neglecting system heterogeneity)
leads to a higher average completion time for the Fair Sharing
scheduler compared to the COSHH scheduler. In the case
of the FIFO scheduler, there are two factors degrading its
performance: Small Job Starvation and the larger ratio of small
jobs in the workload. When the large jobs enter the system
(between 20 and 30 total jobs), the average completion times
significantly increase. However, when there are multiple small
jobs in the workload, (between 40 and 50 total jobs), the
average completion time decreases.

Figure 2(ii) shows the scheduling time for this experiment.
The overheads of all algorithms increase as the number of
submitted jobs increases. The growth rate for the COSHH
algorithm is higher than the others as a result of its more
complicated scheduling process. However, its growth rate
decreases as the number of jobs increases. Generally the
jobs in Hadoop workloads exhibit some periodic behaviour.
The first submitted jobs of a job class can cause a longer
classification process. However, because subsequent jobs of
the same job class do not need new classes to be defined,
the classification process of the COSHH algorithm leads to
reduced overheads.

Figure 2(iii) shows the fairness for these experiments.
Comparing the algorithms, the Fair Sharing algorithm has the
best fairness. This is as expected, because the main goal of
this algorithm is improving the fairness metric. The COSHH
algorithm has a competitive fairness with the Fair Sharing
algorithm.

C. Case Study 2: Resource Number Scalability

This case study evaluates performance when the number of
resources varies. The workload in the experiments consists of
100 jobs from the Yahoo! traces in [8]. To define different
size clusters, the six types of resources are used, as presented
in Table III. The initial experiment was started with six re-
sources, one from each type. For each succeeding experiment,
one resource was added to reach 102 resource for the final
experiment (i.e. 17 resources of each type).

Figure 2(iv) shows the average completion times for these
experiments. Increasing the number of resources reduces the
load in the system and improves the average completion
time for all of the schedulers. However, this can reduce the
chance of local execution for the jobs, which tends to increase
the average completion time. Therefore, by increasing the

Resources Slot Memory
slot# execRate Capacity RetriveRate

R1 2 5MHz 4TB 9Gbps
R2 2 500GHz 400KB 40Kbps
R3 2 500GHz 4TB 9Gbps
R4 2 5MHz 4TB 9Gbps
R5 2 500GHz 400KB 40Kbps
R6 2 5MHz 400KB 40Kbps

TABLE III
RESOURCE TYPES

number of resources, first the average completion time of
the schedulers reduces until the number of resources reaches
approximately 54. Beyond this point, the average completion
times increase slightly, because of the locality issue. Similar
to the first case study, the Sticky Slot and Small Job Starvation
problems affect the performance of the Fair Sharing and FIFO
schedulers, respectively. Moreover, they both suffer from the
Resource and Job Mismatch problem, increasing their average
completion times.

Figure 2(v) shows the scheduling times for the different
schedulers. The overheads of the COSHH and the Fair Sharing
algorithms get larger as the number of resources increases. The
reason is the longer search and sort times in these algorithms.
Moreover, the larger number of resources leads to an increase
in the classification and LP solving times in the COSHH
algorithm. The rate of increase in the COSHH algorithm is
higher than the Fair Sharing algorithm. However, its growth
rate decreases as the number of jobs increases.

Figure 2(vi) presents the fairness for these experiments. As
the number of resources scales up, the fairness metric improves
in all algorithms. However, the Fair Sharing algorithm achieves
better performance in terms of fairness.

V. HYBRID SOLUTION

Based on the experimental results and analysis, we propose
a hybrid scheduler for scalable and heterogeneous Hadoop
systems (Figure 3). This scheduler is a combination of the
three analyzed algorithms. The selector chooses an appropriate
scheduler as the number of jobs and resources scale up or
down. However, the overall solution is to use the COSHH
algorithm when the system is overloaded (e.g., during peak
hours), the FIFO algorithm for underloaded systems (e.g., after
hours), and the Fair Sharing algorithm when the system load
is balanced.

When the system is underloaded, and the number of free
slots is greater than the number of waiting tasks, the scheduler
switches to the FIFO algorithm. This can happen when the
system has just started or during low load periods. Here, the
simple FIFO algorithm can improve the average completion



Fig. 2. Performance Metrics for Yahoo! Workload. (i)-(iii): Scaling by Number of Jobs, (iv)-(vi): Scaling by Number of Resources

time with minimum scheduling overhead. However, as the
system load increases such that the available number of slots
is less than the number of waiting tasks, the hybrid scheduler
selects the Fair Sharing algorithm. A good example of this
case is when the system has warmed up after starting, and the
workload has not yet peaked. In this case, the FIFO algorithm
may degrade the system performance with respect to both the
average completion time and the fairness metrics. Moreover, as
the system is not yet overloaded, using the complex COSHH
algorithm can yield large overhead in terms of scheduling time
and fairness. When the load increases such that the system is
overloaded, and the number of waiting tasks in job queues
is quickly increasing, the Fair Sharing algorithm can greatly
increase the average completion time. Therefore, the scheduler
switches to the COSHH algorithm which improves the average
completion time, while avoiding considerable degradation in
the fairness metric. The selector needs to define two thresholds
to determine the status of the system. Thresholds can be
defined based on the system load. One possibility is to use the
total number of slots, and the total number of tasks waiting in
the scheduling queue, to define the threshold. We expect that
other practical guidelines could be developed for this purpose,
but leave this for future work.

To evaluate the proposed hybrid solution scheduler, we
used another real Hadoop workload, presented in Table IV.

Fig. 3. Suggested Hybrid Scheduler

The workload contains 100 jobs of a trace from a cluster at
Facebook, spanning six months from May to October 2009.
In the evaluation, there are 10 users with zero minimum
shares, and similar priorities. Each user submits jobs from
one category in Table IV. The experimental environment is
defined similar to that in Section V.

Figure 4(i)-(iii) shows the average completion time, the
scheduling overhead, and fairness as the number of jobs scales.



Job Categories Duration (sec) Job Input Shuffle Output Map Time Reduce Time
Small jobs 32 126 21KB 0 871KB 20 0
Fast data load 1260 25 381KB 0 1.9GB 6079 0
Slow data load 6600 3 10 KB 0 4.2GB 26321 0
Large data load 4200 10 405 KB 0 447GB 66657 0
Huge data load 18300 3 446 KB 0 1.1TB 125662 0
Fast aggregate 900 10 230 GB 8.8GB 491MB 104338 66760
Aggregate and expand 1800 6 1.9 TB 502MB 2.6GB 348942 76736
Expand and aggregate 5100 2 418 GB 2.5TB 45GB 1076089 974395
Data transform 2100 14 255 GB 788GB 1.6GB 384562 338050
Data summary 3300 1 7.6 TB 51GB 104KB 4843452 853911

TABLE IV
JOB CATEGORIES IN FACEBOOK TRACE. MAP TIME AND REDUCE TIME ARE IN TASK-SECONDS [8].

These results confirm our observations for the Yahoo! work-
loads. The hybrid scheduler uses the FIFO, the Fair Sharing,
and the COSHH algorithm when the system is underloaded,
balanced, and overloaded, respectively. When the number of
jobs is scaling up, the first switch between schedulers happens
at around 25 jobs in the workload. This is related to the number
of tasks waiting and the total slots (31 map slots and 23
reduce slots) on all six resources. The second switch between
schedulers is when the number of jobs in the workload is
at around 45, which is determined based on the maximum
number of tasks in all users’ queues of the Fair Sharing
algorithm.

Figure 4(iv)-(vi) shows the average completion time, the
scheduling time, and fairness, when the number of resources
in the system is varying. In these experiments, one switch
between schedulers happens when the number of resources is
at around 70. This is where the system moves from overloaded
to balanced due to the increase in the number of resources.

Finally, it should be noted here that there is a transition
period to observe the improved performance after each switch.
The transition happens due to the tasks that have already been
scheduled or are running as a result of the previous algorithm.
The resources first need to complete their jobs assigned by the
previous algorithm to be available for jobs scheduled by the
newly selected algorithm. In these experiments, the transition
happens between 30 and 60 jobs.

VI. RELATED WORK

A job scheduler is an essential component of every Hadoop
system. Hadoop uses FIFO as its default scheduler. Some of
the performance issues of FIFO were discussed in Section II.
The additional schedulers are introduced in [12], where they
are collectively known as Fair Sharing. The Fair Sharing algo-
rithm does not achieve good performance with respect to data
locality [5]. Delay Scheduler [5] is a complementary algorithm
for Fair Sharing which improves the data locality. However,
even Delay Scheduler does not consider heterogeneity in the
system.

MapReduce was initially designed for small clusters in
which a simple and fast scheduling algorithm like FIFO can
achieve acceptable performance levels. However, experimen-
tal results show that using simple schedulers which do not
consider system parameters can cause severe performance
degradation in large systems; particularly in systems that
share data among multiple users [12]. The next generation of
schedulers in Hadoop were introduced by Hadoop on Demand

(HOD) [10], which set up private Hadoop clusters on demand
for users. HOD allows users to share a common file system
while owning private Hadoop clusters on their allocated nodes.
This approach failed in practice because it violated the data
locality design of the original MapReduce scheduler, and it
resulted in poor system utilization.

There are a number of Hadoop schedulers developed for re-
stricted scalable and heterogeneous systems such as Dynamic
Priority (DP) [7] and Dominant Resource Fairness (DRF) [11].
The former is a parallel task scheduler which enables users to
interactively control their allocated capacity by dynamically
adjusting their budgets. The latter addresses the problem of
fair allocation of multiple types of resources to users with
heterogeneous demands. Finally COSHH [6] is specifically
proposed for heterogeneous environments.

This paper evaluates FIFO, Fair Sharing, and COSHH
to propose a hybrid solution. Although COSHH has shown
promising results for systems with various types of jobs and
resources, its scheduling overhead can be a barrier for small
and under-loaded systems. This was one of the motivations
behind composing different schedulers for a scalable and
heterogeneous system. DP was developed for user-interactive
environments, differing from our target systems. Similarly,
DRF was initially considered to be used instead of COSHH,
but this algorithm just considers heterogeneity in the user
demands while ignoring resource heterogeneity.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a hybrid scheduler for scalable
and heterogeneous Hadoop systems. Performance issues for
Hadoop schedulers are analyzed and evaluated for heteroge-
neous and scalable Hadoop systems. These results suggested
a combination of the FIFO, Fair Sharing, and COSHH sched-
ulers is effective, where the selection is based on the load on
the system and available system resources.

We plan to extend this work in three directions: (i) the
required thresholds specifying system load status will be
further investigated. The outcome will be a selection function
that considers system parameters including type, number, and
complexity of jobs as well as specification of available re-
sources; (ii) the hybrid scheduler will be extended to work for
homogeneous environments. The future hybrid scheduler will
be smart enough to recognize the degree of heterogeneity in a
system and then select the best scheduler for a heterogeneous
or homogeneous environment; (iii) the hybrid scheduler has a
potential to consider other performance metrics as well. The



Fig. 4. Performance Metrics for Facebook Workload. (i)-(iii): Scaling by Number of Jobs, (iv)-(vi): Scaling by Number of Resources

scheduler will be extended to receive a desired performance
metric as an input, and select an appropriate algorithm with
respect to the corresponding metric.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and
Engineering Research Council of Canada. A major part of
this work was done while both authors were visiting UC
Berkeley. In particular, the first author would like to thank
Randy Katz, Ion Stoica, Yanpei Chen and Sameer Agarwal for
their comments on our research. Also, the authors gratefully
acknowledge Facebook and Yahoo! for permission to use their
workload traces in this research.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A view of Cloud computing,” Communications of the
ACM, vol. 53, no. 4, pp. 50–58, April 2010. [Online]. Available:
http://doi.acm.org/10.1145/1721654.1721672

[2] I. Stoica, “A Berkeley view of Big Data: Algorithms, machines and
people,” in UC Berkeley EECS Annual Research Symposium, 2011.

[3] Apache Hadoop, http://hadoop.apache.org.
[4] J. Dean and S. Ghemawat, “MapReduce: simplified data processing

on large clusters,” Communications of the ACM, vol. 51, pp. 107–113,
January 2008.

[5] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proceedings of the 5th European
conference on Computer systems, Paris, France, 2010, pp. 265–278.

[6] A. Rasooli and D. G. Down, “An adaptive scheduling algorithm
for dynamic heterogeneous hadoop systems,” in Proceedings of
the 2011 Conference of the Center for Advanced Studies on
Collaborative Research, ser. CASCON ’11. Toronto, Ontario,
Canada: IBM Corp., 2011, pp. 30–44. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2093889.2093893

[7] T. Sandholm and K. Lai, “Dynamic proportional share scheduling in
Hadoop,” in Proceedings of the 15th Workshop on Job Scheduling
Strategies for Parallel Processing. Heidelberg, 2010, pp. 110–131.

[8] Y. Chen, A. Ganapathi, R. Griffith, and R. H. Katz, “The case for eval-
uating MapReduce performance using workload suites,” in Proceedings
of the 19th Annual IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems.
IEEE, 2011, pp. 390–399.

[9] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing
in big data systems: a cross-industry study of MapReduce workloads,”
Proceedings of the international conference on Very Large Data Bases
(VLDB) Endowment, vol. 5, no. 12, pp. 1802–1813, 2012. [Online].
Available: http://dl.acm.org/citation.cfm?id=2367502.2367519

[10] Apache, “Hadoop On Demand documentation,” 2007,
[Online; accessed 30-November-2010]. [Online]. Available:
http://hadoop.apache.org/common/docs/r0.17.2/hod.html

[11] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica, “Dominant resource fairness: fair allocation of
multiple resource types,” in Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation.
USENIX Association, 2011, pp. 24–24. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1972457.1972490

[12] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Job scheduling for multi-user MapReduce
clusters,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2009-55, April 2009. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-55.html


