
Resource Management for Dynamic MapReduce Clusters
in Multicluster Systems

Bogdan Ghiţ, Nezih Yigitbasi, Dick Epema
Delft University of Technology, the Netherlands
{b.i.ghit, m.n.yigitbasi, d.h.j.epema}@tudelft.nl

Abstract—State-of-the-art MapReduce frameworks such as
Hadoop can easily scale up to thousands of machines and to
large numbers of users. Nevertheless, some users may require
isolated environments to develop their applications and to
process their data, which calls for multiple deployments of MR
clusters within the same physical infrastructure. In this paper,
we design and implement a resource management system to
facilitate the on-demand isolated deployment of MapReduce
clusters in multicluster systems. Deploying multiple MapRe-
duce clusters enables four types of isolation, with respect to
performance, to data management, to fault tolerance, and to
versioning. To efficiently manage the underlying physical re-
sources, we propose three provisioning policies for dynamically
resizing MapReduce clusters, and we evaluate the performance
of our system through experiments on a real multicluster.

Keywords-MapReduce isolation, dynamic resource manage-
ment, performance evaluation, multicluster systems.

I. INTRODUCTION

With the considerable growth of data-intensive applica-
tions, the MapReduce programming model has become an
exponent for large-scale many-task computing applications
[1], as it not only eases the management of big data, but also
simplifies the programming complexity of such applications
on large cluster systems. Despite the high scalability of
MapReduce frameworks, isolating MapReduce workloads
and their data is very attractive for many users. In this paper,
we design support for deploying multiple MapReduce clus-
ters (MR clusters) within multicluster environments through
extensions to our KOALA grid scheduler [2]. Furthermore,
we develop a dynamic resizing mechanism for MR clusters,
and three resource provisioning policies. We evaluate the
performance of the system through experiments conducted
on a multicluster system (DAS-4 1) managed by KOALA.

Having multiple MR clusters within a single multicluster
system brings four advantages over a single MR cluster
deployment, which are related to performance, data manage-
ment, fault tolerance, and versioning. First, we can achieve
performance isolation between streams of jobs with different
characteristics, for instance, by having separate MR clusters
for large and small jobs, or for production and experimental

1www.cs.vu.nl/das4/

jobs. Secondly, different (groups of) users each working
with their own data set may prefer having their own MR
clusters to avoid interference, or for privacy and security
reasons. We call this type of isolation with different data
sets in different MR clusters data isolation. A third type of
isolation is failure isolation, which hides the failures of one
MR cluster from the users of the other MR clusters. Fourth,
with the multi-MR clusters approach, version isolation may
be enforced as well, such that different versions of the
MapReduce framework can run simultaneously.

Making efficient use of the resources is mandatory in
a multicluster environment. Therefore, to improve resource
utilization, we provide the MR clusters with a grow/shrink
mechanism. The problem of dynamically resizing MR clus-
ters brings two challenges. First, we need to determine
under which conditions the size of an MR cluster should
be modified. When the data set exceeds the storage capacity
available on the nodes of the MR cluster, or the workloads
are too heavy, grow decisions should be taken. On the other
hand, in case of an underutilized MR cluster, some of its
nodes may be released. Secondly, we need to address the
issue of rebalancing the data when resizing a cluster. When
resizing, we distinguish core nodes and transient nodes.
Both types of nodes are used to execute tasks, but only
the core nodes locally store data. Using transient nodes to
provision an MR cluster has the advantage of not having to
change the distribution of the data when they are released.
On the down side of this approach, the data locality principle
is broken, as all the tasks executed on transient nodes need
to access non-local data.

The contributions of this paper are as follows:
• The architectural design of KOALA that provides isola-

tion between the deployments of multiple MR clusters
within a multicluster system.

• The dynamic resizing mechanism for MR clusters with
three distinct provisioning policies that avoids high
reconfiguration costs and handles the data distribution
in a reliable fashion.

• An evaluation of the performance of KOALA with
MapReduce support on a real infrastructure (DAS-4).

II. BACKGROUND

This section presents the main technologies on which our
work is based on, the MapReduce model with its open source
implementation Hadoop, and our grid scheduler KOALA.

A. Hadoop

The popularity of MapReduce has increased exponentially
since its birth in 2004 due to its simplicity, its large appli-
cability to an extensive variety of problems, and its ability
to scale to large clusters of thousands of machines.

Hadoop [3] is a MapReduce implementation based on
the Google model first introduced in [4]. Hadoop provides
an execution framework that splits the job into multiple
tasks and the Hadoop Distributed File System (HDFS) that
ensures efficient and reliable storage for large volumes of
data. Hadoop execution is divided into two main phases.
During the map phase, each map task processes an input
block of fixed size (e.g., 64 MB or 128 MB), and produces a
set of intermediate pairs. Afterwards, in the reduce phase, all
intermediate values for a given key are combined, producing
in this manner a set of merged output values.

A central entity (the JobTracker) running on a master
node is responsible for managing a number of workers (the
TaskTrackers). Each TaskTracker can be configured with
several map and reduce slots such that multiple tasks may
be executed in parallel on the same node. The JobTracker
assigns tasks to the workers in FIFO order, while the
TaskTrackers report their state via a heartbeat mechanism.

The HDFS is designed in the same master-worker fashion:
the NameNode runs on the master node and manages the
system metadata, while the DataNodes run on the workers
and store the actual data. For the I/O operations, the Na-
meNode provides the locations of the data block to be read
or written, and the actual transfer occurs directly between
the HDFS client and the DataNodes.

B. Koala Grid Scheduler

KOALA is a grid resource manager developed for mul-
ticluster systems such as the DAS-4 with the goal of
designing, implementing, and analyzing scheduling strate-
gies for various application types. The scheduler represents
the core of the system and is responsible for scheduling
jobs submitted by users by placing and executing them on
suitable cluster sites according to its scheduling policies.
Jobs are submitted to KOALA through specialized runners
for certain application types (e.g., cycle scavenging jobs [5],
workflows [6], and malleable applications [7]). To monitor
the status of the resources, KOALA uses a processor and a
network information service.

To develop a MapReduce runner for KOALA we took as
a reference the design of the CS-Runner [5], which provides
KOALA with mechanisms for the efficient allocation of oth-
erwise idle resources in a multicluster to Cycle-Scavenging
(CS) applications (e.g., Parameter Sweep Applications). The

CS-Runner initiates Launchers, which are a kind of pilot
jobs, to execute the required set of parameters. The CS-
Runner implements a grow/shrink mechansim that allows
increasing or decreasing the number of Launchers when a
resource offer or a resource reclaim is received from KOALA.

To schedule jobs, KOALA interfaces with the local re-
source managers of the clusters in the multicluster grid
system. However, KOALA does not fully control the grid
resources, as users may submit their jobs directly through the
local resource managers deployed on each physical cluster.

III. DESIGN CONSIDERATIONS

MR clusters may be isolated in two different ways in
a multicluster system, as illustrated in Figure 1: either
across different physical clusters (inter-cluster isolation),
or within single physical clusters (intra-cluster isolation).
In both cases, four types of isolation can be identified:
performance isolation, data isolation, failure isolation, and
version isolation, which we now describe in turn.

MRcluster MRclusterMRcluster

Site C

MRcluster

Site A

MRcluster

Site B

Figure 1. The two types of isolation: inter-cluster isolation (two MR
clusters deployed within sites A and B) and intra-cluster isolation (three
MR clusters deployed within site C).

A. Performance Isolation

With the standard FIFO scheduling technique, MR clus-
ters executing long running jobs delay the execution of small
jobs. To overcome this shortcoming, [8] proposes the FAIR
MapReduce scheduler. With its dynamic resource allocation
scheme, the small jobs receive their share of resources in a
short time by reducing the number of nodes occupied by the
large jobs. The execution time of the large jobs is increased,
as they are forced to spawn across a smaller number of nodes
than the actual MR cluster capacity. In this way, the small
jobs gain their fair share of resources without long delays, at
the expense of reducing the performance of the large jobs.

The trade-off between performance and fairness of the
MapReduce jobs can be avoided by isolating the streams of
small and large (or potentially even more classes of) jobs
within separate MR clusters. Similarly, deploying multiple
MR clusters allows large companies to isolate their produc-
tion workloads from experimental jobs. Jobs in the develop-
ment phase may need thorough testing and debugging before
being launched on a production cluster. Thus, isolating them
within a separate MR cluster first preserves the performance
of the production MR cluster, and secondly, may reduce the
debugging time for the developer.

B. Data Isolation

Users may form groups based on the data sets they want to
process, such that the jobs of a certain group are executed
within a separate MR cluster. Therefore, several data sets
may be stored in different MR clusters, while the stream
of jobs is demultiplexed into multiple substreams based
on the data set they need to process. Data isolation is
important for instance for systems research groups that want
to anaylize the performance of single applications under
controled conditions.

Furthermore, users may request their own MR cluster
for running experiments within an isolated environment, or
to guarantee the privacy and the security of their data. In
the case of a single MR cluster deployment, the data is
uniformly distributed across the nodes of the system, and
the distributed file system is visible to all users. Thus, there
is no privacy among the users of the system. Also, due to the
lack of protection, users may intentionally or unintentionally
alter the data of other users. For these reasons, there is a need
to isolate the data sets within different MR clusters and to
selectively allow access to read and process them.

C. Failure Isolation

A third type of isolation is the failure isolation. The
MapReduce deployments are prone to both software (im-
plementation or configuration errors) and hardware failures
(server or network equipment failures). In both cases, fail-
ures of the system may cause loss of data, interruption of
the running jobs, and low availability. By deploying multiple
MR clusters, only the users of a specific MR cluster suffer
the consequences of its failures.

D. Version Isolation

With multiple MR clusters we can enable access to
different versions of the MapReduce framework at the
same time. This is useful when upgrades of the frame-
work are being made, or when new implementations are
being developed. Testing, debugging, and benchmarking the
frameworks, while having at the same time a running stable
production MR cluster is enabled by our approach.

IV. DEPLOYING DYNAMIC MAPREDUCE CLUSTERS
WITH KOALA

In this section, we present our approach for achieving
isolation between multiple MR clusters. First, we explain
the system model, then we describe the components of
the KOALA resource management system, and finally, we
propose three dynamic resizing policies.

A. System Model

An MR cluster relies on a two-layer architecture: a
compute framework to facilitate an execution environment
for MapReduce applications, and an underlying distributed
file system that manages in a reliable and efficient manner
large data volumes. Both layers are distributed across all

nodes of an MR cluster, such that each node may execute
tasks and also store data. A node of an MR cluster can
be configured with multiple task slots such that each slot
corresponds to a core of the processor available on the node.
Based on the type of tasks to be executed, we distinguish
map and reduce slots.

When growing or shrinking the MR cluster, the two
layers need to be adjusted accordingly. While the execution
framework can be easily resized without significant reconfig-
uration costs, changing the size of the distributed file system
is more complex, because it may require rebalancing the
data. As this operation is expensive, and may have to be
performed frequently, we propose a hybrid architecture for
MR clusters, with two types of nodes:

• The core nodes are the nodes that are initially allo-
cated for the MR cluster deployment. They are fully
functional nodes that run both the TaskTracker and the
DataNode, and so they are used both for their compute
power to execute tasks, and for their disk capacity to
store blocks of data.

• The transient nodes are temporary nodes provisioned
after the initial deployment of the MR cluster. They
can be used as compute nodes that only run the
TaskTracker, but do not store blocks of data and do
not run the DataNode. Their removal does not change
the distribution of the data.

B. System Architecture

This section explains how we have extended the original
KOALA architecture to include MapReduce support. Figure
2 illustrates the interaction between the existing KOALA
components and the additional components that extend the
scheduler with support for deploying MR clusters on a
multicluster system. The new components are the following:
a specific KOALA runner called the MR-Runner, a specific
MR cluster configuration module called the MR-Launcher,
and the global manager of all active MR-Runners called the
MR-ClusterManager.

KOALA is responsible for scheduling jobs, which in this
case are complete MR clusters, received from the MR-
Runners. Based on the desired size (number of nodes) of
the MR cluster, KOALA schedules the job on the adequate
physical cluster by applying one of its placement policies.
To reduce the overhead of redistributing the data, we assume
that the size of the MR cluster never decreases below the
initial number of core nodes. Nevertheless, MR clusters may
be resized by adding or removing transient nodes. The grow
or shrink requests to the active MR-Runners are initiated by
the scheduler itself, which tries to achieve fairness between
multiple MR clusters.

KOALA monitors the availability of the resources through
the KOALA Information System (KIS) module. When idle
nodes are identified, the MR-Runners may receive grow

requests. In contrast, in order to open up space for new job
submissions, the scheduler may send shrink requests to the
active MR-Runners.

After KOALA allocates nodes for the MR cluster deploy-
ment on a certain physical cluster, the MR-Runner interfaces
with the local resource manager (e.g., Grid Engine) in order
to proceed with the deployment of the MR cluster. The MR-
Runner distinguishes one of the nodes as the master node,
while the others are marked as slaves.

VU Site

TU Site

MR-Runner Scheduler

MR-ClusterManager

UvA Site

2. Resource Allocation

1. MR cluster Registration

Information
System

4. MR job execution

KOALA

0. Job Entry Point

R
es

ou
rc

e
M

on
ito

rin
g

MR-Launcher

3. MR cluster Configuration

Figure 2. The MapReduce Runner and the Koala Grid Scheduler

From this point, the actual configuration of the MapRe-
duce framework is realized through the MR-Launcher. The
MR-Launcher configures the core nodes in two phases: first,
it mounts the distributed file system on the local storage of
the nodes, and then it installs the compute framework for
executing MapReduce applications. Furthermore, the MR-
Launcher is also able to configure and remove transient
nodes, or to shut down the entire MR cluster. In the
current implementation, the MR-Launcher uses the Hadoop
daemons to configure the MR cluster: the NameNode and
DataNodes for the HDFS, and the JobTracker and Task-
Trackers for the compute framework.

Besides the scheduling and deployment functions, the
MR-Runner also monitors several parameters of the MR
cluster: the total number of (real) MapReduce jobs, the
status of each such job, and the total number of map and
reduce tasks. The monitoring process feeds a runner-side
provisioning mechanism based on which the MR-Runner
takes resizing decisions. We propose three provisioning
policies, which we describe in detail in the next section.

The MR-ClusterManager is a central entity running on
the scheduler side in order to maintain the metadata of each
active MR cluster. To submit MapReduce jobs to an MR
cluster scheduled through KOALA or to manipulate the data
within the distributed file system, the user needs access to
the corresponding metadata: the unique cluster identifier, the
location of the configuration files, and the IP address of the

master node. All the commands to submit MapReduce jobs
or to access the distributed file system are executed on the
master node of the MR cluster.

C. Resizing Mechanism

KOALA enables a two-level scheduling architecure. On
the scheduler side, KOALA allocates resources for the MR
cluster deployments based on a fair-share policy, such as the
Equipartition-All or Equipartition-PerSite [5]. By monitor-
ing the multicluster system utilization, the scheduler peri-
odically offers additional nodes to the MR-Runners (grow
requests), or reclaims previously provisioned nodes (shrink
requests). Upon receiving a resource offer or reclaim from
KOALA, the MR-Runner grows or shrinks the MR cluster de-
pending on the ratio F of the number of running tasks (map
and reduce tasks) and the number of available slots (map
and reduce slots) in the MR cluster. The resizing mechanism
dynamically tunes the value F between a minimum and a
maximum threshold by adding nodes to or removing nodes
from the MR cluster according to the following policy:

• GSP (Grow-Shrink Policy): The MR-Runner main-
tains the value of F to be between a minimum and
a maximum threshold by accepting grow and shrink
requests. On the MR-Runner side the user sets two
constants, S+ and S−, representing the number of
nodes the MR-Runner adds or removes whenever it
receives a grow or shrink request. As the transient nodes
may frequently join or leave the system, they do not
contribute to the storage layer.

We compare the GSP with two basic policies, which
accept every resource offer, and shrink only when the
workload execution is completed:

• GGP (Greedy-Grow Policy): With this policy the MR-
Runner accepts every resource offer regardless of the
utilization of the MR cluster and ignores all shrink
requests from KOALA. Thus, the MR cluster only grows
in size, and only shrinks when the workload is finished.
The provisioning is supported by transient nodes which
do not contribute to the storage layer.

• GGDP (Greedy-Grow-with-Data Policy): Similarly
to GGP, this policy makes the MR cluster grow in size
every time a resource offer is received. As opposed to
the previous policy, the GGDP is based on provisioning
with core nodes instead of transient nodes. When a
resource offer is received, the provisioned nodes are
configured as core nodes, running both the TaskTracker
and the DataNode. As a consequence, to avoid data
redistribution, all shrink requests are declined.

V. EXPERIMENTAL SETUP

This section presents the description of the multicluster
grid system DAS-4, the Hadoop configuration parameters,
and the workloads we generate for our experiments.

A. System Configuration
The infrastructure that supported our experiments is a

wide-area computer system dedicated to research in parallel
and distributed computing. The Distributed ASCI Supercom-
puter (DAS-4), currently in its fourth generation, consists of
six clusters distributed in institutes and organizations across
the Netherlands. As shown in Table I, the compute nodes are
equipped with dual-quad-core processors at 2.4 GHz, 24 GB
memory, and a local storage of 2 TB. The networks available
on DAS-4 are Ethernet at 1 Gbps and the high-speed QDR
Infiniband at 10 Gbps. The Grid Engine is configured on
each cluster as the local resource manager.

We deploy KOALA as a meta-scheduler that interfaces
with the local schedulers on each cluster in order to schedule
and execute jobs. The MR-Runner is implemented in Java
and currently configures Hadoop 0.20.203 clusters. The
actual MR cluster configuration is realized through bash
scripts which are executed within Java processes.

We configure the HDFS on a virtual disk device (with
RAID0 software) that runs over two physical devices, with
2 TB storage in total. The data is stored in the HDFS in
blocks of 64 MB or 128 MB with a default replication
factor of 3. With 16 logical cores per node enabled through
hyperthreading, we configure the TaskTrackers with 6 up to
8 map slots and 2 reduce slots, respectively. To avoid issues
such as network saturation due to the limited bandwidth, the
Hadoop daemons use the Infiniband network.

Table I
NODE CONFIGURATION

Processor Dual quad-core Intel E5620
Memory 24 GB RAM
Physical Disk 2 ATA OCZ Z-Drive R2 with 2 TB (RAID0)
Network 10 Gbps Infiniband
Operating system Linux CentOS-6
JVM jdk1.6.0 27
MapReduce framework Hadoop 0.20.203

B. Workloads
The Wordcount and Sort applications are two common

MapReduce applications included in the Hadoop distribution
that are used as MapReduce benchmarks in Hibench [9].
Wordcount counts the number of occurences of each word
in a given set of input files. The map function simply emits
key-value pairs for each word, while the actual counting
is performed by the reducers. On the other hand, Sort
transforms the input data from one representation to another.
With both map and reduce functions implemented as identity
functions, which do not modify the input data, the sort
operation is performed by the MapReduce framework itself
during the shuffling phase. As the framework guarantees that
the intermediate key/value pairs are processed in increasing
key order, the output generated is sorted.

Both small and large jobs are popular in MapReduce
clusters. According to [10], 98% of the jobs at Facebook

process 6.9 MB of data in less than a minute. On the other
hand, Google reported in 2004 MapReduce computations
that process terabytes of data on thousands of machines [4].

Based on the input size to process, we define 8 types of
MapReduce jobs with the characteristics given in Table II.
For each job, the number of reducers is set between 5%
and 25% of the number of map tasks (same setting as in
the workloads used in [8]). In addition, for the large jobs
(more than 160 map tasks) we also use the common rule of
thumb for setting the number of reducers: 90% or 180% of
the number of available reduce slots in the MR cluster [3].

In Section VI, we will perform four experiments. For de-
termining the CPU and disk utilization, we generate 100 GB
input data using the RandomTextWriter and RandomWriter
programs included in the Hadoop distribution. With the data
block size set to 128 MB, a Wordcount or a Sort MapReduce
job running on the given data set launches 800 map tasks.
The same configuration is used to determine the speedup
of the applications. To evaluate the performance of transient
nodes, we generate data sets of 40 GB for Wordcount and 50
GB for Sort, with the data block size set to 128 MB. Finally,
for the performance evaluation of the resizing policies, we
generate a stream of 50 MapReduce jobs processing data
sets from 1 GB to 40 GB split into data blocks of 64 MB,
with an exponential inter-arrival pattern with a mean value
of 30 seconds [8].

Table II
WORKLOAD CHARACTERISTICS

JobType InputSize (GB) BlockSize(MB) Maps
0 100 128 800
1 50 128 400
2 40 128 320
3 40 64 640
4 20 64 320
5 10 64 160
6 5 64 80
7 2.5 64 40
8 1 64 16

VI. EXPERIMENTAL RESULTS

In our performance evaluation we investigate the CPU
and disk utilization for each of the two applications, we
determine the impact on the job response time of the
numbers of core and transient nodes in an MR cluster, and
we run benchmarks to compare the resizing policies.

A. CPU and Disk Utilization

First, we seek to understand the characteristics of our
workloads, and to this end, we monitor the resource utiliza-
tion when running them. Thus, we run the Wordcount and
Sort applications on the 100 GB data set (JobType 0) and we
gather CPU and disk utilization statistics from every node
of the MR cluster at 1-second intervals. The Linux tools
we use for monitoring are top and netstat. The graphs in
Figure 3 show the CPU and the disk utilizations as average

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

U
til

iz
at

io
n

[%
]

Time [s]

(a) CPU Utilization of Wordcount.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

U
til

iz
at

io
n

[%
]

Time [s]

(b) CPU Utilization of Sort.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

U
til

iz
at

io
n

[%
]

Time [s]

(c) Disk Utilization of Wordcount.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

U
til

iz
at

io
n

[%
]

Time [s]

(d) Disk Utilization of Sort.

Figure 3. The CPU and disk utilization for the Wordcount and Sort applications.

values on all nodes of the MR cluster. The disk utilization
of a node is the average of the values measured on the two
physical hard disks.

The CPU and disk utilizations illustrated in Figure 3 show
that the Wordcount application is CPU-bound, and that the
Sort application is IO-bound. For the Wordcount application
we observe a long map phase with high CPU utilization,
followed by a short reduce phase which has a low CPU
utilization. The disk utilization is below 40% during the
entire execution of the application. On the other hand, the
figures for the Sort application show that it has a short map
phase during which the CPU utilization oscillates between
40% and 60%, followed by a long reduce phase which is
highly disk intensive and with very low CPU utilization.

B. Execution Time versus Fraction of Transient Nodes

First, we assess the impact of the transient nodes on
the exection time of single applications using static MR
clusters, without any resizing mechanism. We set up MR
clusters of 10 up to 40 nodes with the large data set as
input data (JobType 0 for Wordcount and Sort). The Sort
application launches 144 reduce tasks, representing 180% of
the available reduce slots on the MR cluster with 40 nodes
(1.8× 2× 40); for Wordcount we use a single reduce task.
Figure 4 shows that the speedup for both applications on
MR clusters with only core nodes is close to linear; the
speedup is defined here relative to an MR cluster with 10
core nodes. Each data point in 4 was obtained by averaging
the measurements over 3 runs.

Secondly, we run each application on MR clusters with

a total of 40 nodes with a variable number of transient
nodes that do not contain data. In Figure 5(a) we notice that
the Wordcount application (JobType 2) has similar response
times no matter how many transient nodes the MR cluster
has (from 0 up to 30). On the other hand, Sort (JobType
1) shows a significant performance degradation when the
number of transient nodes increases: the execution time for
Sort doubles when the number of transient nodes increases
from 0 to 30. Wordcount scales better on transient nodes
than Sort due to the smaller amount of output data. While
Wordcount generates less than 20 KB for the input data of
40 GB, in the case of Sort, the size of the output data equals
the size of the input data, which is 50 GB.

We will now explain why the Sort application performs
poorly on MR clusters with a large number of transient
nodes. Let’s consider an MR cluster with nc core nodes
and nt transient nodes. At the end of the reduce phase, all
nc+nt nodes perform write requests on the local storages of
the core nodes. The amount of output data generated by the
transient nodes is Dt = (nt×Dout)/(nc+nt) Gbits, where
Dout represents the size of the entire output data for Sort.
This data is transferred across the network from the transient
nodes to the local storages of the core nodes where the
HDFS is mounted. The time to transfer Dt is Tt = Dt/bw,
where bw represents the bandwidth available on the DAS-4
(10 Gbps on Infiniband). The time spent writing the data
on the disks is Tw = Dt/(2× nc × swrite) seconds, where
swrite denotes the write speed on the local disks and 2×nc

is the total number of disks available on the core nodes.
For instance, an MR cluster with nc = 10 core nodes and

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 15 20 25 30 35 40

S
pe

ed
up

Number of nodes

Measured
Optimum

(a) Speedup of Wordcount.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 15 20 25 30 35 40

S
pe

ed
up

Number of nodes

Measured
Optimum

(b) Speedup of Sort.

Figure 4. The speedup for the Wordcount and Sort applications on MR clusters with only core nodes.

 0

 50

 100

 150

 200

 250

 300

 350

Wordcount Sort

E
x

e
c
u

ti
o
n

 T
im

e
 [

s]

MR cluster of 40 nodes

25% core nodes
50% core nodes
75% core nodes
100% core nodes

(a) Execution time versus the fraction of core nodes.

 0

 100

 200

 300

 400

 500

Static GGP GSP GGDP

A
v

g
.

Jo
b

 E
x

ec
.
T

im
e

[s
]

MR cluster with 20 core nodes
(b) The Average Job Execution Time on a dynamic MR
cluster running 50 jobs.

Figure 5. The MR-Runner performance under single and multiple jobs workloads.

nt = 30 transient nodes generates Dt = 922 Gbits. With
bw = 10 Gbps we obtain Tt = 92 seconds. According to the
specification of the devices, the read/write speed on the ATA
OCZ disks is 1 Gbps and 900 Mbps, respectively. Therefore,
Tw is 51 seconds. The smaller the number of core nodes,
the higher the contention on the physical disks on which
the HDFS is mounted. Therefore, as we can see in Figure
5(a), with 25% core nodes of the MR cluster capacity, the
execution time of the workload is 2.7 higher than the ideal
case of an MR cluster with 40 core nodes.

C. Performance of the Resizing Mechanism

To assess the performance of the MR cluster resizing
mechanism, we run four benchmarks that execute succe-
sively a stream of jobs on a static MR cluster, and on a dy-
namic MR cluster with one of our three provisioning policies
enabled (GGP, GGDP, or GSP). The MR cluster consists of
20 core nodes, and we assume a pool of 20 transient nodes
to be available for provisioning during our experiments. The
job stream consists of 50 jobs. For simplicity, we instrument
the MR-Runner to initiate resource offers every T seconds,
where T is set either to 30 seconds for the GSP, or to 120
seconds for the GGP and GGDP. For the last two policies,
the size of the resource offer is 2 nodes. For the GSP, the
MR cluster accepts a resource offer when F is greater than
1.5, and releases nodes when F is below 0.25. When the MR
cluster frequently changes its size by adding or releasing a
large number of nodes, the reconfiguration overhead may

impact the performance of the running jobs. Therefore, we
set S+ and S− to 5 and 2, respectively.

As can be seen in Figure 5(b), GGP shows a small
improvement over the static approach, while GSP reduces
the execution time by a factor of 1.7. Inuitively, GGP is not
effective growing decisions are taken without considering
the state of the MR cluster (e.g., if the MR cluster is
idle, adding nodes is useless). Also, with a large number
of transient nodes, the contention on the HDFS increases
considerably. On the other hand, GSP monitors the number
of tasks running within the MR cluster and initiates grow
and shrink requests based on the throughput. However, the
best policy is GGDP, which provides local storage for the
provisioned nodes, reducing in this manner the costs of
transferring the output data across the network and writing
it on the disks of the core nodes.

VII. RELATED WORK

The current state of the art work reveals several ap-
proaches for improving the performance of MapReduce clus-
ters by different architectural enhancements that facilitate
dynamic resizing or isolation.

Mesos [11] multiplexes a physical cluster between mul-
tiple frameworks such that different types of applications
(MPI, MapReduce) may share access to large data sets.
The scheduling mechanism enabled by Mesos is based on
resource offers. The scheduler decides how many resources
each framework is entitled to with respect to a fair-share

policy, while the frameworks decide on their own which
resources should be accepted based on the given framework
side policies. Therefore, frameworks have the ability to
reject an offer that does not comply with their resource
requirements. By delegating the scheduling control to the
frameworks, Mesos achieves high scalability, robustness, and
stability. While our multi-MR cluster approach enables four
types of isolation (performance, data, failure, and version
isolation), Mesos achieves high utilization, efficient data
sharing and resource isolation through OS container tech-
nologies, such as Linux Containers.

MOON [12] applies the hybrid architecture with core
and transient nodes in order to deploy MapReduce clus-
ters on volunteer computing systems. Towards this goal,
a small number of dedicated nodes with high reliability
are deployed behind the voluteer computing system for
storage and computing power. To overcome the impact
of unexpected interruptions, MOON proactively replicates
tasks towards the job completion. In addition, MOON uses
the dedicated nodes not only as data servers, but also to
execute task replicas. In our design, the transient nodes
are used to improve the performance of the MapReduce
cluster deployed on the core nodes, as opposed to MOON,
which uses the dedicated nodes to supplement the volunteer
computing system.

Elastizer [13] estimates the impact of the cluster resource
properties on the MapReduce job execution. In order to ad-
dress a given cluster sizing problem, the Elastizer performs a
search through the space of resources and job configuration
parameters. This search is driven by a what-if engine that
explores job profiles of MapReduce job executions to find
the optimal set of resources and job configuration parame-
ters. As opposed to the offline reasoning of the Elastizer, our
approach uses the throughput as deciding factor for growing
or shrinking the MapReduce cluster.

Our Koala scheduler along with the MR-Runner pro-
vide different types of isolation that improve the perfor-
mance, data management, fault tolerance and development
of MapReduce frameworks. In addition, the MR-Runner is
enriched with a grow/shrink mechanism that dynamically
changes the size of the MR cluster.

VIII. CONCLUSION

In this paper we have presented the design of a MapRe-
duce runner for our KOALA grid scheduler that enables
multiple deployments of MapReduce clusters within a mul-
ticluster system. The proposed system architecture achieves
four types of isolation, with respect to performance, data,
failures and versions. We enrich the MapReduce clusters
with dynamic resizing capabilities and we incorporate three
provisioning policies.

The performance evaluation shows that the CPU-bound
applications scale on transient nodes as well as on core
nodes, while the IO-bound applications suffer a high per-
formance degradation when the number of transient nodes
increases. We improve the performance of a static MR
cluster with a grow/shrink mechanism that enables three
provisioning policies: GGP, GSP, and GGDP.

As future work, the MR-Runner will be extended to
support deployments of single MR clusters across multiple
physical clusters. More thorough parameter study to find the
optimal values for F , T , S+, and S− is desired as well.

IX. ACKNOWLEDGMENT

This publication was supported by the Dutch national
program COMMIT.

REFERENCES
[1] I. Raicu, I. Foster, and Y. Zhao, “Many-task computing for grids and

supercomputers,” 1st Workshop on Many-Task Computing on Grids
and Supercomputers (MTAGS08), pp. 1–11, 2008.

[2] H. Mohamed and D. Epema, “Koala: A Co-allocating Grid Scheduler,”
Concurrency and Computation: Practice and Experience, Vol. 20, pp.
1851–1876, 2008.

[3] T. White, Hadoop: The Definitive Guide. Yahoo Press, 2010.
[4] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Processing

on Large Clusters,” Comm. of the ACM, Vol. 51, no. 1, pp. 107–113,
2008.

[5] O. Sonmez, B. Grundeken, H. Mohamed, A. Iosup, and D. Epema,
“Scheduling Strategies for Cycle Scavenging in Multicluster Grid
Systems,” 9th Int’l. Symp. on Cluster Computing and the Grid
(CCGrid), pp. 12–19, 2009.

[6] O. Sonmez, N. Yigitbasi, S. Abrishami, A. Iosup, and D. Epema, “Per-
formance Analysis of Dynamic Workflow Scheduling in Multicluster
Grids,” 19th Int’l. Symp. on High-Performance Distributed Computing
(HPDC), pp. 49–60, 2010.

[7] J. Buisson, O. Sonmez, H. Mohamed, W. Lammers, and D. Epema,
“Scheduling Malleable Applications in Multicluster Systems,” 9th
Int’l. Conference on Cluster Computing, pp. 372–381, 2007.

[8] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay Scheduling: A Simple Technique for Achieving
Locality and Fairness in Cluster Scheduling,” 5th European confer-
ence on Computer systems (EuroSys), pp. 265–278, 2010.

[9] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The Hibench
Benchmark Suite: Characterization of the MapReduce-based Data
Analysis,” 26th Int’l Conference on Data Engineering Workshops
(ICDEW), pp. 41–51, 2010.

[10] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz, “Energy Efficiency
for Large-Scale MapReduce Workloads with Significant Interactive
Analysis,” pp. 43–56, 2012.

[11] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-
grained Resource Sharing in the Data Center,” 8th Int’l. Symp. on
Networked Systems Design and Implementation (NSDI), pp. 1–14,
2011.

[12] H. Lin, X. Ma, J. Archuleta, W. Feng, M. Gardner, and Z. Zhang,
“Moon: Mapreduce On Opportunistic Environments,” 19th Int’l.
Symp. on High Performance Distributed Computing (HPDC), pp. 95–
106, 2010.

[13] H. Herodotou, F. Dong, and S. Babu, “No One (Cluster) Size Fits All:
Automatic Cluster Sizing for Data-intensive Analytics,” 2nd Symp. on
Cloud Computing, pp. 18–31, 2011.

