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Abstract—MapReduce is a powerful data processing platform
for commercial and academic applications. In this paper, we
build a novel Hadoop MapReduce framework executed on the
Open Science Grid which spans multiple institutions across the
United States – Hadoop On the Grid (HOG). It is different
from previous MapReduce platforms that run on dedicated
environments like clusters or clouds. HOG provides a free, elastic,
and dynamic MapReduce environment on the opportunistic
resources of the grid. In HOG, we improve Hadoop’s fault
tolerance for wide area data analysis by mapping data centers
across the U.S. to virtual racks and creating multi-institution
failure domains. Our modifications to the Hadoop framework
are transparent to existing Hadoop MapReduce applications. In
the evaluation, we successfully extend HOG to 1100 nodes on the
grid. Additionally, we evaluate HOG with a simulated Facebook
Hadoop MapReduce workload. We conclude that HOG’s rapid
scalability can provide comparable performance to a dedicated
Hadoop cluster.

I. INTRODUCTION

MapReduce [1] is a framework pioneered by Google for
processing large amounts of data in a distributed environment.
Hadoop [2] is the open source implementation of the MapRe-
duce framework. Due to the simplicity of its programming
model and the run-time tolerance for node failures, MapRe-
duce is widely used by companies such as Facebook [3], the
New York Times [4], etc. Futhermore, scientists also employ
Hadoop to acquire scalable and reliable analysis and storage
services. The University of Nebraska-Lincoln constructed a
1.6PB Hadoop Distributed File System to store Compact
Muon Solenoid data from the Large Hadron Collider [5],
as well as data for the Open Science Grid (OSG) [6]. In
the University of Maryland, researchers developed blastreduce
based on Hadoop MapReduce to analyze DNA sequences [7].
As Hadoop MapReduce became popular, the number and scale
of MapReduce programs became increasingly large.

To utilize Hadoop MapReduce, users need a Hadoop plat-
form which runs on a dedicated environment like a cluster or
cloud. In this paper, we construct a novel Hadoop platform,
Hadoop on the Grid (HOG), based on the OSG [6] which
can provide scalable and free of charge services for users who
plan to use Hadoop MapReduce. It can be transplanted to other
large scale distributed grid systems with minor modifications.

The OSG, which is the HOG’s physical environment, is
composed of approximately 60,000 CPU cores and spans
109 sites in the United States. In this nation-wide distributed
system, node failure is a common occurrence [8]. When
running on the OSG, users from institutions that do not own
resources run opportunistically and can be preempted at any

time. A preemption on the remote OSG site can be caused by
the processing job running over allocated time, or if the owner
of the machine has a need for the resources. Preemption is
determined by the remote site’s policies which are outside the
control of the OSG user. Therefore, high node failure rate is
the largest barrier that HOG addresses.

Hadoop’s fault tolerance focuses on two failure levels and
uses replication to avoid data loss. The first level is the node
level which means a node failure should not affect the data
integrity of the cluster. The second level is the rack level which
means the data is safe if a whole rack of nodes fail. In HOG,
we introduce another level which is the site failure level. Since
HOG runs on multiple sites within the OSG. It is possible that
a whole site could fail. HOG’s data placement and replication
policy takes the site failure into account when it places data
blocks. The extension to a third failure level will also bring
data locality benefits which we will explain in Section III.

The rest of this paper is organized as follows. Section
II gives the background information about Hadoop and the
OSG. We describe the architecture of HOG in section III. In
section IV, we show our evaluation of HOG with a well-known
workload. Section V briefly describes related work, and VI
discusses possible future research. Finally, we summarize our
conclusions in Section VII.

II. BACKGROUND

A. Hadoop

A Hadoop cluster is composed of two parts: Hadoop Dis-
tributed File System and MapReduce.

A Hadoop cluster uses Hadoop Distributed File System
(HDFS) [9] to manage its data. HDFS provides storage for
the MapReduce job’s input and output data. It is designed
as a highly fault-tolerant, high throughput, and high capacity
distributed file system. It is suitable for storing terabytes or
petabytes of data on clusters and has flexible hardware require-
ments, which are typically comprised of commodity hardware
like personal computers. The significant differences between
HDFS and other distributed file systems are: HDFS’s write-
once-read-many and streaming access models that make HDFS
efficient in distributing and processing data, reliably storing
large amounts of data, and robustly incorporating heteroge-
neous hardware and operating system environments. It divides
each file into small fixed-size blocks (e.g., 64 MB) and stores
multiple (default is three) copies of each block on cluster node
disks. The distribution of data blocks increases throughput and
fault tolerance. HDFS follows the master/slave architecture.



Fig. 1. HDFS Structure. Source: http://hadoop.apache.org

The master node is called the Namenode which manages the
file system namespace and regulates client accesses to the data.
There are a number of worker nodes, called Datanodes, which
store actual data in units of blocks. The Namenode maintains
a mapping table which maps data blocks to Datanodes in
order to process write and read requests from HDFS clients.
It is also in charge of file system namespace operations
such as closing, renaming, and opening files and directories.
HDFS allows a secondary Namenode to periodically save a
copy of the metadata stored on the Namenode in case of
Namenode failure. The Datanode stores the data blocks in
its local disk and executes instructions like data replacement,
creation, deletion, and replication from the Namenode. Figure
1 (adopted from Apache Hadoop Project [10]) illustrates the
HDFS architecture.

A Datanode periodically reports its status through a heart-
beat message and asks the Namenode for instructions. Every
Datanode listens to the network so that other Datanodes and
users can request read and write operations. The heartbeat
can also help the Namenode to detect connectivity with its
Datanode. If the Namenode does not receive a heartbeat from
a Datanode in the configured period of time, it marks the node
down. Data blocks stored on this node will be considered lost
and the Namenode will automatically replicate those blocks
of this lost node onto some other datanodes.

Hadoop MapReduce is the computation framework built
upon HDFS. There are two versions of Hadoop MapReduce:
MapReduce 1.0 and MapReduce 2.0 (Yarn [11]). In this paper,
we only introduce MapReduce 1.0 which is comprised of two
stages: map and reduce. These two stages take a set of input
key/value pairs and produce a set of output key/value pairs.
When a MapReduce job is submitted to the cluster, it is divided
into M map tasks and R reduce tasks, where each map task
will process one block (e.g., 64 MB) of input data.

A Hadoop cluster uses slave (worker) nodes to execute map
and reduce tasks. There are limitations on the number of map
and reduce tasks that a worker node can accept and execute
simultaneously. That is, each worker node has a fixed number

of map slots and reduce slots. Periodically, a worker node
sends a heartbeat signal to the master node. Upon receiving a
heartbeat from a worker node that has empty map/reduce slots,
the master node invokes the MapReduce scheduler to assign
tasks to the worker node. A worker node who is assigned a
map task reads the content of the corresponding input data
block from HDFS, possibly from a remote worker node. The
worker node parses input key/value pairs out of the block,
and passes each pair to the user-defined map function. The
map function generates intermediate key/value pairs, which
are buffered in memory, and periodically written to the local
disk and divided into R regions by the partitioning function.
The locations of these intermediate data are passed back to
the master node, which is responsible for forwarding these
locations to reduce tasks.

A reduce task uses remote procedure calls to read the
intermediate data generated by the M map tasks of the job.
Each reduce task is responsible for a region (partition) of
intermediate data with certain keys. Thus, it has to retrieve
its partition of data from all worker nodes that have executed
the M map tasks. This process is called shuffle, which involves
many-to-many communications among worker nodes. The
reduce task then reads in the intermediate data and invokes the
reduce function to produce the final output data (i.e., output
key/value pairs) for its reduce partition.

B. Open Science Grid

The OSG [6] is a national organization that provides ser-
vices and software to form a distributed network of clusters.
OSG is composed of 100+ sites primarily in the United States.
Figure 2 shows the OSG sites across the United States.

Each OSG user has a personal certificate that is trusted by
a Virtual Organization (VO) [12]. A VO is a set of individuals
and/or institutions that perform computational research and
share resources. A User receives a X.509 user certificate [13]
which is used to authenticate with remote resources from the
VO.

Users submit jobs to remote gatekeepers. OSG gatekeepers
are a combination of different software based on the Globus
Toolkit [14], [15]. Users can use different tools that can
communicate using the Globus resource specification language
[16]. The common tool is Condor [17]. Once Jobs arrive at
the gatekeeper, the gatekeeper will submit them to the remote
batch scheduler belonging to the sites. The remote batch
scheduler will launch those jobs according to its scheduling
policy.

Sites can provide storage resources accessible with the
user’s certificate. All storage resources are again accessed by a
set of common protocols, Storage Resource Manager (SRM)
[18] and Globus GridFTP [19]. SRM provides an interface
for metadata operations and refers transfer requests to a set
of load balanced GridFTP servers. The underlying storage
technologies at the sites are transparent to users. The storage
is optimized for high bandwidth transfers between sites, and
high throughput data distribution inside the local site.



Fig. 2. OSG sites across the United States. Source: http://display.grid.iu.edu/

III. ARCHITECTURE

The architecture of HOG is comprised of three components.
The first is the grid submission and execution component. In
this part, the Hadoop worker nodes requests are sent out to the
grid and their execution is managed. The second major com-
ponent is the Hadoop distributed file system (HDFS) that runs
across the grid. And the third component is the MapReduce
framework that executes the MapReduce applications across
the grid.

A. Grid Submission and Execution

Grid submission and execution is managed by Condor
and GlideinWMS, which are generic frameworks designed
for resource allocation and management. Condor is used to
manage the submission and execution of the Hadoop worker
nodes. GlideinWMS is used to allocate nodes on remote sites
transparently to the user.

When the HOG starts, a user can request Hadoop worker
nodes to run on the grid. The number of nodes can grow and
shrink elastically by submitting and removing the worker node
jobs. The Hadoop worker node includes both the datanode and
the tasktracker processes. The Condor submission file is shown
in Listing 1. The submission file specifies attributes of the jobs
that will run the Hadoop worker nodes.

The requirements line enforces a policy that the
Hadoop worker nodes should only run at these sites. We
restricted our experiments only to these sites because they
provide publicly reachable IP addresses on the worker nodes.
Hadoop worker nodes must be able to communicate to each
other directly for data transferring and messaging. Thus,
we restricted execution to 5 sites. FNAL_FERMIGRID and
USCMS-FNAL-WC1 are clusters at Fermi National Acceler-
ator Laboratory. UCSDT2 is the US CMS Tier 2 hosted at
the University of California – San Diego. AGLT2 is the US
Atlas Great Lakes Tier 2 hosted at the University of Michigan.

Listing 1. Condor Submission file for HOG
universe = vanilla
requirements = GLIDEIN_ResourceName =?= "

FNAL_FERMIGRID" || GLIDEIN_ResourceName =?=
"USCMS-FNAL-WC1" || GLIDEIN_ResourceName =?=
"UCSDT2" || GLIDEIN_ResourceName =?= "
AGLT2" || GLIDEIN_ResourceName =?= "MIT_CMS"

executable = wrapper.sh
output = condor_out/out.$(CLUSTER).$(PROCESS)
error = condor_out/err.$(CLUSTER).$(PROCESS)
log = hadoop-grid.log
should_transfer_files = YES
when_to_transfer_output = ON_EXIT_OR_EVICT
OnExitRemove = FALSE
PeriodicHold = false
x509userproxy = /tmp/x509up_u1384
queue 1000

MIT_CMS is the US CMS Tier 2 hosted at the Massachusetts
Institute of Technology.

The executable specified in the condor submit file is
a simple shell wrapper script that will initialize the Hadoop
worker node environment. The wrapper script follows these
steps in order to start the Hadoop worker node:

1) Initialize the OSG operating environment
2) Download the Hadoop worker node executables
3) Extract the worker node executables and set late binding

configurations
4) Start the Hadoop daemons
5) When the daemons shut down, clean up the working

directory.

Initializing the OSG operating environment sets the required
environment variables for proper operation on an OSG worker
node. For example, it can set the binary search path to include
grid file transfer tools that may be installed in non-standard
locations.



Fig. 3. HOG Architecture

In the evaluation the Hadoop executables package was
compressed to 75MB, which is small enough to transfer
to worker nodes. This package includes the configuration
file, the deployment scripts, and the Hadoop jars. It can be
downloaded from a central repository hosted on a web server.
Decompression of the package takes a trivial amount of time
on the worker nodes, and is not considered in the evaluation.

The wrapper must set configuration options for the Hadoop
worker nodes at runtime since the environment is not known
until it reaches the node where it will be executing. The
Hadoop configuration must be dynamically changed to point
the value of mapred.local.dir to a worker node local
directory. If the Hadoop working directory is on shared stor-
age, such as a network file system, it will slow computation
due to file access time and we will lose data locality on the
worker nodes. We avoid using shared storage by utilizing
GlideinWMS’s mechanisms for starting a job in a worker
node’s local directory.

B. Hadoop On The Grid

The Hadoop instance that is running on the grid has two
major components, Hadoop Distributed File System (HDFS)
and MapReduce, shown in Figure 3. The master servers,
Namenode for HDFS and JobTracker for MapReduce, are
single points of failure for the HOG system, therefore they
reside on a stable central server. If the master server becomes
unavailable, execution of MapReduce jobs will stop and the
HDFS file system will become unavailable (though no data
will be lost). When the grid jobs start, the slave servers will
report to the single master server.

Hadoop requires worker nodes to be reachable by each
other. Some clusters in the Open Science Grid are designed to
be behind one or more machines that provide Network Address
Translation (NAT) access to the Internet. Hadoop is unable to
talk to nodes behind a remote NAT because NAT blocks direct
access. Therefore, we are limited to sites in the OSG that have
a public IPs on their worker nodes.

Failures on the grid are very common due to the site un-
availability and preemption. It is important that HOG responds
quickly to recover lost nodes by redistributing data and pro-
cessing to remaining nodes, and requesting more nodes from
the grid. The Hadoop master node receives heartbeat messages

from the worker nodes periodically reporting their health. In
HOG, we decreased the time between heartbeat messages
and decreased the timeout time for the worker nodes. If the
worker nodes do not report every 30 seconds, then the node
is marked dead for both the namenode and jobtracker. The
traditional value for the heartbeat.recheck.interval
is 15 minutes for a node before declaring the node dead.

1) HDFS On The Grid: Creating and maintaining a dis-
tributed filesystem on a disparate set of resources can be
challenging. Hadoop is suited for this challenge as it is
designed for frequent failures.

In traditional Hadoop, the datanode will contact the
namenode and report its status including information on the
size of the disk on the remote node and how much is available
for Hadoop to store. The namenode will determine what data
files should be stored on the node by the location of the node
using rack awareness and by the percent of the space that is
used by Hadoop.

Rack awareness provides both load balancing and improved
fault tolerance for the file system. Rack awareness is designed
to separate nodes into physical failure domains and to load
balance. It assumes that bandwidth inside a rack is much larger
than the bandwidth between racks, therefore the namenode
will use the rack awareness to place data closer to the source.
For fault tolerance, the namenode uses rack awareness to
put data on the source rack and one other rack to guard
against whole rack failure. An entire rack could fail if a
network component fails, or if power is interrupted to the
rack power supply unit. However, rack awareness requires
knowledge of the physical layout of the cluster. On the grid,
users are unlikely to have knowledge of the physical layout
of the cluster, therefore traditional rack awareness would be
impractical. Instead, rack awareness in HOG is extended to
site awareness. We differentiate nodes based on their sites.

Sites are common failure domains, therefore fitting well
into the existing rack awareness model. Sites in the OSG
are usually one or a few clusters in the same administrative
domain. There can be many failures that can cause an entire
site to go down, such as a core network component failure, or
a large power outage. These are the errors that rack awareness
was designed to mitigate.

Also, sites usually have very high bandwidth between their
worker nodes, and lower bandwidth to the outside world.
This is synonymous with HDFS’s assumptions about the rack,
that the bandwidth inside the rack is much larger than the
bandwidth between racks.

Sites are detected and separated by the reported host-
names of the worker nodes. Since the worker nodes need
to be publicly addressable, they will likely have DNS
names. For example, the DNS names will be broken up
into workername.site.edu. The worker nodes will be
separated depending on the last two groups, the site.edu.
All worker nodes with the same last two groups will be
determined to be in the same site.

The detection and separation is done by a site aware-
ness script, defined in the Hadoop configuration as



topology.script.file.name. It is executed each time
a new node is discovered by the namenode and the jobtracker.

In addition to site-awareness, we increased the default
replication factor for all files in HDFS to 10 replicas from the
traditional replication factor for Hadoop of 3. Simultaneous
preemptions on a site is common in the OSG since higher
priority users may submit many jobs, preempting many of our
HDFS instances. In order to address simultaneous preemp-
tions, both site awareness and increased replication are used.
Also, increased replication will guard against preemptions
occurring faster than the namenode can replicate missing data
blocks. Too many replicas would impose extra replication
overhead for the namenode. Too few would cause frequent data
failures in the dynamic HOG environment. 10 replicas was the
experimental number which worked for our evaluation.

2) MapReduce On The Grid: The goal of our implementa-
tion is to provide a Hadoop platform comparable to that of a
dedicated cluster for users to run on the grid. They should not
have to change their MapReduce code in order to run on our
adaptation of Hadoop. Therefore, we made no API changes to
MapReduce, only underlying changes in order to better fit the
grid usage model.

When the grid job begins, it starts the tasktracker on the
remote worker node. The tasktracker is in charge of managing
the execution of Map and Reduce tasks on the worker node.
When it begins, it contacts the jobtracker on the central server
which marks the node available for processing.

The tasktrackers report their status to the jobtracker and
accept task assignments from it. In the current version of HOG,
we follow Apache Hadoop’s FIFO job scheduling policy with
speculative execution enabled. At any time, a task has at most
two copies of execution in the system.

The communication between the tasktracker and the job-
tracker is based on HTTP. In the HOG system, the HTTP
requests and responses are over the WAN which has high
latency and long transmission time compared with the LAN
of a cluster. Because of this increased communication latency,
it is expected that the startup and data transfer initiations will
be increased.

Just as site awareness affects data placement, it also affects
the placement of Map jobs for processing. The default Hadoop
scheduler will attempt to schedule Map tasks on nodes that
have the input data. If it is unable to find a data local node,
it will attempt to schedule the Map task in the same site as
the input data. Again, Hadoop assumes the bandwidth inside
a site is greater than the bandwidth between sites.

IV. EVALUATION

A. Experimental Setup

In this section, we employ a workload from the Facebook
production cluster to verify HOG performance and reliability.
The Facebook workload is used to construct the performance
baseline between our HOG and the dedicated Hadoop cluster.
We create a submission schedule that is similar to the one used
by Zaharia et al. [3]. They generated a submission schedule
for 100 jobs by sampling job inter-arrival times and input sizes

from the distribution seen at Facebook over a week in October
2009. By sampling job inter-arrival times at random from the
Facebook trace, they found that the distribution of inter-arrival
times was roughly exponential with a mean of 14 seconds.

They also generated job input sizes based on the Facebook
workload, by looking at the distribution of number of map
tasks per job at Facebook and creating datasets with the correct
sizes (because there is one map task per 64 MB input block).
Job sizes were quantized into nine bins, listed in Table I, to
make it possible to compare jobs in the same bin within and
across experiments. Our submission schedule has similar job
sizes and job inter-arrival times. In particular, our job size
distribution follows the first six bins of job sizes shown in
Table I, which cover about 89% of the jobs at the Facebook
production cluster. Because most jobs at Facebook are small
and our test cluster is limited in size, we exclude those jobs
with more than 300 map tasks. Like the schedule in [3], [20],
the distribution of inter-arrival times is exponential with a
mean of 14 seconds, making our total submission schedule
21 minutes long.

TABLE I
FACEBOOK PRODUCTION WORKLOAD

%Jobs #Maps # of jobs
Bin #Maps at Facebook in Benchmark in Benchmark
1 1 39% 1 38
2 2 16% 2 16
3 3-20 14% 10 14
4 21-60 9% 50 8
5 61-150 6% 100 6
6 151-300 6% 200 6
7 301-500 4% 400 4
8 501-1500 4% 800 4
9 >1501 3% 4800 4

However, the authors [3] only provide the number of map
tasks required by each job. In this paper, we introduce reduce
tasks to the workload. They number in a non-decreasing
pattern compared to job’s map tasks. They are listed in Table
II.

TABLE II
TRUNCATED WORKLOAD FOR THIS PAPER

Bin Map Tasks Reduce Tasks
1 1 1
2 2 1
3 10 5
4 50 10
5 100 20
6 200 30

In this paper, we define the term “equivalent performance”.
Two systems have equivalent performance if they have the
same response time for a given workload. We will build
the HOG system and a Hadoop cluster to achieve equivalent
performance. Because the size of a Hadoop cluster is fixed,
we need to tune the number of nodes in the HOG system to
achieve equivalent performance.

In order to avoid the interference caused by growing and
shrinking in HOG, we first configure a given number of



TABLE III
DEDICATED MAPREDUCE CLUSTER CONFIGURATION

Nodes Quantity Hardware and Hadoop
Configuration

Master node 1 2 single-core 2.2GHz
Opteron-248 CPUs, 8GB RAM,

1Gbps Ethernet
Slave nodes-I 20 2 dual-core

2.2GHz Opteron-275 CPUs,
4GB RAM, 1 Gbps Ethernet,

4 map and 1 reduce slots per node
Slave nodes-II 10 2 single-core

2.2GHz Optron-64 CPUs,
4GB RAM, 1 Gbps Ethernet,

2 map and 1 reduce slots per node

nodes that HOG will achieve and wait until HOG reaches this
number. Then, we start to upload input data and execute the
evaluation workload.

We first built a Hadoop cluster which contains 30 worker
nodes that are configured as one rack. The worker nodes-I
group contains 20 nodes. Each of them has 2 dual-core CPUs.
The worker nodes-II group contains 10 nodes, each with only
2 single-core CPUs. The cluster is composed of 100 CPUs.
Detailed hardware information is listed in the Table III. Our
Hadoop cluster is based on Hadoop 0.20. We used loadgen,
which is a test example in Hadoop source code and used in
evaluating Hadoop schedulers [3], [20] to get the performance
baseline. We configure 1 reduce slot for each worker node
because there is only one Ethernet card in each node and the
reduce stage involves intensive network data transfer. Also,
configure 1 map slot per core. Other configuration parameters
follow the default settings of Hadoop from Apache [9]. For
the HOG configuration, we configure each node to have 1 map
slot and 1 reduce slot, since the job is allocated 1 core on the
remote worker node.
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Fig. 4. HOG System Performance

B. Equivalent Performance

In the Figure 4, the dashed line is the response time of the
workload in our local cluster and the solid line is the response
time of the HOG cluster executing on the OSG. We can see
the solid line crosses the dashed line when the HOG has 99
to 100 nodes. We see that the HOG system needs [99,100]

nodes to achieve equivalent performance when compared to
our 100-core Hadoop cluster.

We performed 3 runs at each sampling point. The sampling
point was set as the maximum number of nodes configured
to join HOG. We waited until the available nodes reached
the maximum and started execution. During execution, nodes
left the system, and other nodes replaced them, but we only
marked on the graph with the maximum nodes that could be
available.

We can also see from Figure 4 that the response time of the
workload does not always decrease with the increasing number
of nodes in the HOG system. There are many reasons. As is
well known, HOG is based on a dynamic environment and the
worker nodes are opportunistic. Once some nodes leave, the
HOG system will automatically request more nodes from the
OSG to compensate for the missing worker nodes. However,
it takes time for requesting, configuring, and starting a new
worker node. At the same time, the newly added nodes have
no data. HOG has to either copy data to those nodes or start
tasks without data locality. The more dynamic the resource
environment is, the longer the response time will be.

In order to verify our analysis, we examine three executions
of the HOG system with 55 nodes. Figure 5 shows the number
of available nodes in the HOG system during the workload
execution. We set the maximum number of nodes in HOG
to 55, though the reported number of nodes in the figure
fluctuated above 55 momentarily as nodes left but where not
reported dead for their heartbeat timeout. Figure 5a and 5b
show smaller node change compared with Figure 5c. In Table
IV, we can see Figure 5b shows the shortest response time and
Figure 5c shows the longest response time. We also use the
area which is beneath the curve during the execution of the
workload, to demonstrate the node fluctuation. It also verified
our analysis of the workload executions.

We can avoid this fluctuation by running multiple copies
of MapReduce jobs in the HOG system. Currently, Hadoop
only uses multiple executions for slower tasks (1/3 slower than
average) execution, and at most two copies for a task. In our
future work, we will make all tasks have configurable number
of copies running in the HOG and take the fastest as the result.
In this way, the HOG can finish MapReduce jobs faster even
when there are some nodes missing.

C. Scalability

As we mentioned in our introduction, HOG is scalable. If
users want to increase the number of nodes in the HOG, they
can submit more Condor jobs for extra nodes. They can use
the HDFS balancer to balance the data distribution. In our ex-
periments, we elastically extend our system from 132 to 1101
nodes and run the workload to verify HOG’s performance.
Figure 4 shows the response time of the workload in different
number of nodes in HOG. In general, we can obtain shorter
response time if there are more nodes in the HOG system.

However, there are downsides if we keep increasing the size
of HOG. First of all, the data movement and replication cannot
be neglected because this process will impose extra overhead



(a) 55 stable nodes (b) 55 stable nodes (c) 55 unstable nodes

Fig. 5. HOG Node Fluctuation

TABLE IV
AREA BENEATH CURVES

Figure No. Response Time Area
5a 4396 181020
5b 3896 172360
5c 6235 252455

on the Namenode and Datanode. The performance of HOG
will degrade if replication happens during the execution of a
workload.

Secondly, the probability of losing a node rises with the
increasing of cores in HOG. As we can see in the Table IV,
the more node fluctuation, the longer response we will get
for a given workload. The performance may degrade as node
failure increases.

D. Experiences

We learned some lessons during the construction of HOG.
We list them in this section.

1) Abandoned Data Nodes: In our first iteration of HOG,
the Hadoop daemons were started with the Hadoop-provided
startup scripts. These scripts perform a “double fork”, where
the daemons will leave the process tree of the script and run
independently in their own process tree. Unfortunately, many
site resource managers are unable to preempt a daemon that
has double forked, since they only look at the process tree of
the initial executable.

When a site wishes to preempt a HOG node, it will
first kill the process tree, then remove the job’s working
directories. Since HOG daemons were outside of the process
tree, they continued after the site killed the grid job. When
the site deleted the job’s working directories, the datanode
would fail, but the tasktracker would continue working. When
the tasktracker accepted a map or reduce job, it would fail
immediately as it was unable to save the input data to disk.

In order to solve the abandoned daemon problem, we
implemented two fixes. First, we modified the Hadoop source
code to enable it to periodically check the working directory
for writability and readability by writing a small file and
reading it back. We modified the Datanode.java class in
Hadoop. The original implementation of Datanode.java checks

the disk availability when it starts. We add the disk availability
check in service code and do the check every 3 minutes. If
these tests fail, then the daemons will shut themselves down.
Second, we changed how we started the daemons to keep them
in the same process tree. In this implementation, the datanode
and task tracker would not be lost to the system as it was a
direct child process of the wrapper script.

2) Disk Overflow: During our experiments, we noticed
many failures during the execution of a MapReduce sample
workflow. The errors indicated that the worker nodes were
running out of disk. Our replication factor and the high latency
between some nodes on the grid caused the disk overflows. It is
also worth noting that Hadoop will not delete map intermediate
data until the entire job is done.

The high replication factor for HOG allows for very good
data locality. With the data on the same node as the map
execution, reading in the data is very quick. But, each reduce
needs to get data from each mapper. Since the reduce stages
run on other sites, the data will need to be transferred over the
WAN, which will be much more slowly than the map tasks.
As map tasks complete, the map tasks for subsequent jobs
are executed. Meanwhile, reduce tasks are completing much
slower. This leads to a buildup of intermediate map output on
the worker nodes, causing the nodes to fail due to lack of disk
space. These failures are reported to the jobtracker as a worker
nodes out of disk error.

V. RELATED WORK

Our platform is different from running Hadoop On Demand
(HOD) [21] on the Grid. HOD will create a temporary Hadoop
platform on the nodes obtained from the Grid Scheduler and
shut down Hadoop after the MapReduce job finishes. For
frequent MapReduce requests, HOD has high reconstruction
overhead, fixed node number, and a randomly chosen head
node. Compared to HOD, HOG does not have reconstruction
time, has a scalable size, and has a static dedicated head
node which hosts the JobTracker and the Namenode. Though
HOG does lose nodes, and has to rebalance data frequently,
HOD reconstructs the entire Hadoop cluster while HOG only
redistributes data from nodes that are lost by preemption.

MOON [22] creates a MapReduce framework on oppor-
tunistic resources. However, they require dedicated nodes to



provide an anchor to supplement the opportunistic resources.
Additionally, the scalability of MOON is limited by the size
of the dedicated anchor cluster. HOG stores all data in the
grid resources and uses replication schemes to guarantee data
availability while MOON requires one replica of each data
block stored on the anchor cluster. The stable central server
in HOG does resemble an anchor, but the scalability of HDFS
is not limited by the size of disk on the central server, rather
on the disk on the many nodes on the grid.

VI. FUTURE WORK

In this paper, we proved the feasibility of deploying HOG,
which can achieve equivalent performance with a dedicated
cluster. However, there are still many issues we need to
resolve.

Security of Hadoop is a very important issue for HOG.
In our current version, HOG uses plain HTTP to achieve
the RPC between nodes. In the OSG, users have to use an
authorized certificate to access resources. To avoid a man in
the middle attack, we will introduce PKI [23] to encrypt the
HTTP communication of HOG because Kerberos [24] used by
Hadoop is not well supported by the OSG.

To shrink and grow HOG, we need to consider how the data
blocks will be moved and replicated. We can use the rate of
shrinking and growing to detect the instability of HOG to set
the number of replicas of the files and the number of redundant
MapReduce tasks. [25]

VII. CONCLUSION

In this paper, we created a Hadoop infrastructure based
on the Open Science Grid. Our contribution includes the
detection and resolution of the zombie datanode problem, site-
awareness, and a data availability solution for HOG. Through
the evaluation, we found that the unreliability of the grid
makes Hadoop on the grid challenging. The HOG system uses
the Open Science Grid, and is therefore free for researchers.
We found that the HOG system, though difficult to develop,
can reliably achieve equivalent performance with a dedicated
cluster. Additionally, we showed that HOG can scale to 1101
nodes with potential scalability at larger numbers. We will
work on security and enabling multiple copies of map and
reduce tasks execution in the future.
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