Introduction

- Internet consists of multiple organizations
- Thus Internet authentication is inherently distributed
- There is no central database holding credentials for all entities
- The entities involved in an Internet authentication are:
 - **Relying party**: the entity provides services to other entities on Internet
 - **User**: the entity which requests services and is authenticated by relying party
 - **Trusted Third Party (TTP)**: the entity which signs user’s key. The information it provides are certificates which are in form of:

 ![TTP](image)

 `TTP s says x’s key is key.`

An Authentication

- The user contacts the relying party and provides a public-key authenticator
- The relying party authenticates the user, relying on:
 - the authenticator from the user
 - authentication information from TTPs

Trust Model on Internet and Its Risk

- The whole Internet can be viewed as a graph in which:
 - each organization is a node
 - trust relationships among organizations are edges
 - each edge can be considered as a certificate
- **certification path** is a path in the graph which connects relying party with user
- To authenticate a user, the relying party needs to find a certification path
- Graph search is required in order to find a path
- For example, T_1, T_3, T_6, and T_7 is a certification path from relying party R to the user, where R knows T_1’s public key and T_1 signs user U’s public key

Issues of Internet Authentication

- Risk of trusting on Internet:
 - The relying party bears the risk of a mis-authentication
 - Authentication accuracy is depended on TTPs
 - One relying party’s adversary is not necessarily another’s
 - A **strong trust model** is needed which allows each relying party to specify the TTPs used in an authentication
 - X.509 and SDSI/SPKI support strong trust model, but not efficiently
- Cost of Internet Authentication
 - Certification path construction requires irrelevant certificates to be fetched and evaluated
 - The more irrelevant nodes are visited, the more bandwidth is needed

SAyI Groups

- **Building Group**:
 - Relying party needs to decide which Trusted Third Parties (TTPs) are going to be used
 - TTP decides the users in the group
- Groups can be specified by certificates, and SAyI has 3 types of certificates:
 - **Group**: specifying key names, user names and other group certificate names.
 - **Key**: containing a public key of a TTP
 - **User**: associating user’s name with its public key

Example of How the Algorithm Works

- The groups consists of a group certificate of `mit.edu`, a key certificate for `stanford.edu`, and a user certificate for `federalreserve.gov`

SAyI Algorithm

- **SAyI architecture**:
 - The cache recursively fetch all key and group certificates in the group
 - Relying party asks cache to fetch the group information which the user belongs to
 - TTP decides the users in the group
 - Relying party needs to decide which Trusted Third Parties (TTPs) are going to be used
- **SAyI’s authentication involves**:
 - The user contacts relying party for service with a user certificate supplied
 - Relying party requests cache to fetch the group information which the user belongs to
 - The cache recursively fetch all key and group certificates in the group
 - Relying party requests certification path from the cache in order to verify the user certificate
 - The certification path is finally returned to relying party from cache

SAyI Strategy

- A group is set of users with similar privileges
- Relying party defines **groups** using TTPs it trusts for that authentication
- Allows different quality authentication for different purposes
- SAyI only fetches certificates relative to group
- R trusts T_1 and T_7 to provide group information
- T_1 and T_7’s public key are fetched by R
- Users’ key are signed by T_1 and T_7
- No need to visit T_2 or T_6 or other nodes in the graph

Evaluation & Conclusion

- **Bandwidth cost and latency are given for SAyI**
- SAyI is compared with a X.509 PKI consisting of 160 organizations, and it shows 8.75 fold speed-up and a 20 fold reduction in bandwidth cost.