
Conventional wisdom suggests that a hierarchical architecture for computational middleware is inherently more scalable
than a centralized system. When properly implemented, hierarchy can allow some systems to scale well beyond what would be possible with a flat

organizational structure. However, implementing hierarchy within a system often imposes an additional overhead cost, and to our knowledge there has
been no comprehensive study of under what conditions a hierarchical structure can help. We have attempted to rectify some of that oversight by
identifying conditions under which the addition of hierarchy provides more benefit than the loss incurred due to the overhead.

Work Queue
In order to evaluate the benefits of hierarchy
we used the Work Queue system, a lightweight
master-worker framework consisting of a
library and a worker executable. The library is
linked into a master program via a C, Python or
Perl API. The programmer composes tasks that
consist of individual applications, each
annotated with the input files that they require
and the output files they are expected to
produce.

The workers are then run by hand or submitted
as jobs to whatever batch, grid or cloud system
is available. Workers connect to the master
process via TCP and receive and execute tasks.
We've extended Work Queue to allow for
intermediate sub-master or ‘foreman’
processes to test the effects of hierarchy.

while (not done) {

 for(each new task) {

 task = work_queue_task_create(command);

 /* specify files used by task here */

 work_queue_task_submit(queue, task);

 }

 task = work_queue_wait(queue);

 /* process the result of this task */

 work_queue_task_delete(task);

}

Figure 1: A typical Work Queue application

Figure 2: Overall Work Queue Architecture

We investigated the behavior of the system with varying

levels of worker volatility. In master-worker the
connection of a new worker means the master must
transfer over both the unique data for a task and any
common data, increasing that task’s data transfer time
and reducing the master's task dispatch rate. A
hierarchical architecture isolates these disruptions at the
foreman instead of impacting the whole system.
For this experiment we varied the volatility of each
worker from a 0% chance of disconnection up to a 30%
chance of disconnection per minute, and compared the
overall runtime of our hierarchical setup to that of a flat
architecture. We found that the isolation provided by
the foremen allow us to reduce runtime despite
occasionally transferring more total data.

We also looked at the impact of the ratio of
common data to unique data necessary for each
task. When common data is large the startup phase
of the application benefits from parallel data
transfer by the foremen.
On the other hand, when the common data is small
compared to the unique data, the foremen add an
extra transfer step to every data transfer. This
increases latency without benefiting from
parallelism. In the absence of volatile workers or
major communications bottlenecks we saw a
substantial decrease in performance for the
hierarchical system as the ratio tilted in favor of
unique over common data.

Scaling Work Queue for the Cloud with Hierarchy
Michael Albrecht, Dinesh Rajan, Douglas Thain

This work was supported in part by the Department of Energy and the National Science Foundation via grants OCI-1148330 and CBET-0941565

http://nd.edu/~ccl/software/workqueue
Cooperative Computing Lab

We looked at what happened when there are

bandwidth constraints between the master and the
foremen/workers. It is common in distributed systems
to have a fast connection available within a cluster of
workers but a slow connection from that cluster to the
master. A hierarchy can help by reducing the number of
times common data gets transferred over the slower
link.
We ran a set of experiments with different ratios of
bandwidth across the two types of link. We compared
the runtime of our hierarchical architecture to that of a
flat setup, and found a moderate improvement in
performance despite having no change in the amount
of data transferred.

Accelerated Weighted Ensemble or AWE is a method for enhancing the sampling accuracy of the
molecular dynamics simulations of protein systems. It partitions the conformational space of a protein into
cells and creates a fixed number of simulation tasks or "walkers" in each cell. Each walker simulation can
then be run in short time intervals as an independent task, the results of which are recycled into providing
starting data for the next set of walkers.
AWE’s profile (small unique data, large common data, many tasks) and ability to scale almost arbitrarily large
provided an excellent platform to illustrate the benefits of adding hierarchy.
We were able to run an AWE experiment consisting of more than 33,500 tasks on up to 3500 cores
simultaneously, across 3 different distributed systems, with just 10 GB transmitted by the master to the
foremen and 875 GB transmitted by the foremen to the workers.

