
Conventional wisdom suggests that a hierarchical architecture for computational middleware is inherently more scalable 
than a centralized system. When properly implemented, hierarchy can allow some systems to scale well beyond what would be possible with a flat 

organizational structure.  However, implementing hierarchy within a system often imposes an additional overhead cost, and to our knowledge there has 
been no comprehensive study of under what conditions a hierarchical structure can help.  We have attempted to rectify some of that oversight by 
identifying conditions under which the addition of hierarchy provides more benefit than the loss incurred due to the overhead. 

Work Queue 
In order to evaluate the benefits of hierarchy 
we used the Work Queue system, a lightweight 
master-worker framework consisting of a 
library and a worker executable.  The library is 
linked into a master program via a C, Python or 
Perl API.  The programmer composes tasks that 
consist of individual applications, each 
annotated with the input files that they require 
and the output files they are expected to 
produce. 
 
 
 
 
 
 
 
 
 
The workers are then run by hand or submitted 
as jobs to whatever batch, grid or cloud system 
is available.  Workers connect to the master 
process via TCP and receive and execute tasks.  
We've extended Work Queue to allow for 
intermediate sub-master or ‘foreman’ 
processes to test the effects of hierarchy. 

while ( not done ) { 

 for( each new task ) { 

  task = work_queue_task_create( command ); 

  /* specify files used by task here */ 

  work_queue_task_submit( queue, task ); 

 } 

 task = work_queue_wait( queue ); 

 /* process the result of this task */    

 work_queue_task_delete(task); 

} 

Figure 1: A typical Work Queue application 

Figure 2: Overall Work Queue Architecture 

We investigated the behavior of the system with varying 

levels of worker volatility.  In master-worker the 
connection of a new worker means the master must 
transfer over both the unique data for a task and any 
common data, increasing that task’s data transfer time 
and reducing the master's task dispatch rate.  A 
hierarchical architecture isolates these disruptions at the 
foreman instead of impacting the whole system. 
For this experiment we varied the volatility of each 
worker from a 0% chance of disconnection up to a 30% 
chance of disconnection per minute, and compared the 
overall runtime of our hierarchical setup to that of a flat 
architecture.  We found that the isolation provided by 
the foremen allow us to reduce runtime despite 
occasionally transferring more total data. 

We also looked at the impact of the ratio of 
common data to unique data necessary for each 
task.  When common data is large the startup phase 
of the application benefits from parallel data 
transfer by the foremen. 
On the other hand, when the common data is small 
compared to the unique data, the foremen add an 
extra transfer step to every data transfer.  This 
increases latency without benefiting from 
parallelism.  In the absence of volatile workers or 
major communications bottlenecks we saw a 
substantial decrease in performance for the 
hierarchical system as the ratio tilted in favor of 
unique over common data. 

Scaling Work Queue for the Cloud with Hierarchy 
Michael Albrecht, Dinesh Rajan, Douglas Thain 

This work was supported in part by the Department of Energy and the National Science Foundation via grants OCI-1148330 and CBET-0941565 

http://nd.edu/~ccl/software/workqueue 
Cooperative Computing Lab 

We looked at what happened when there are 

bandwidth constraints between the master and the 
foremen/workers.  It is common in distributed systems 
to have a fast connection available within a cluster of 
workers but a slow connection from that cluster to the 
master. A hierarchy can help by reducing the number of 
times common data gets transferred over the slower 
link. 
We ran a set of experiments with different ratios of 
bandwidth across the two types of link.  We compared 
the runtime of our hierarchical architecture to that of a 
flat setup, and found a moderate improvement in 
performance despite having no change in the amount 
of data transferred. 

Accelerated Weighted Ensemble or AWE is a method for enhancing the sampling accuracy of the 
molecular dynamics simulations of protein systems.  It partitions the conformational space of a protein into 
cells and creates a fixed number of simulation tasks or "walkers" in each cell.  Each walker simulation can 
then be run in short time intervals as an independent task, the results of which are recycled into providing 
starting data for the next set of walkers. 
AWE’s profile (small unique data, large common data, many tasks) and ability to scale almost arbitrarily large 
provided an excellent platform to illustrate the benefits of adding hierarchy. 
We were able to run an AWE experiment consisting of more than 33,500 tasks on up to 3500 cores 
simultaneously, across 3 different distributed systems, with just 10 GB transmitted by the master to the 
foremen and 875 GB transmitted by the foremen to the workers. 


