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Background

* Widely accepted that Silicon scaling and low-voltage operation will produce
rising error rates
* Need for a new programming model and a tool which address resilience issues
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Efficient Implementation

* Understand and create application-system partnership for flexible resilience

* Explore efficient implementation of resilient and multi-version data

* Create empirical understanding of GVR’s effectiveness and performance
requirements

Resilient, globally-visible data store
* Incremental, portable approach to resilience for large-scale applications
* Flexible, application-managed cost and coverage for resilience

Research Challenges

* Understand application needs for flexible, portable resilience and performance

* Design of APl suitable for use by application/library developers and tools

* Achieve efficient GVR runtime implementation for multi-version memory and
flexible resilience

* Understand architecture support and its benefits

* Explore new opportunities created by GVR abstractions and its implementation
technologies

Approach

GVR (Global View for Resilience)

* Exploits a global-view data model, which enables irregular, adaptive algorithms
and exascale variability

* Provides an abstraction of data representation which offers resilience and
seamless integration of various components of memory/storage hierarchy

Processes

Global-view Distributed Arrays

Non-uniform, Proportional Resilience
* Applications can specify which data are more important in order to manage
reliability overheads

Multi-version Memory
 Computation phases form “versions” of data
* A program can obtain and recover from earlier versions if needed
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Library Approach

* Implemented as a library

* Can be used together with other libraries (e.g. MPI, Trilinos), allowing gradual
migration to existing applications

* Can be a backend of other libraries/programming models (e.g. CnC, UPC, etc...)
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Cross-layer Partnership (App, Runtime, OS, Architecture)
* Rich error checking and recovery, including application-managed ones
* Efficient error handling implementation at each layer

Scientist/Programmer
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Traditional

Global View Resilience

* Pseudo-code from a molecular dynamics application

GDS_raise_global _error(gds); }
// preserve the important states
GDS_put(atoms, gds);
GDS_version_inc(gds); }

// Array creation and initialization

GDS_alloc(GDS_PRIORITY HIGH, &gds);

GDS register _global _error_handler(gds,
errorhandler);

// full_check is a comprehensive and expensive

// check provided by a user

GDS register _global error_check(gds,

full_check);

GDS_status_t errorhandler(GDS _gds t gds) {

// find a good version in the history

do { GDS_move_to prev(gds); }

while (GDS check global error(gds) != OK);
void mainloop() { // restore the states of atoms and resume

do_computation_and_communication(atoms); GDS get(atoms, gds);

// lightweight error checking GDS resume(gds); return OK;

if (atoms_out_of box(atoms)) { }

// switch to error handling mode

Progress and Accomplishments

e Use cases and initial design of GVR API

e Design of GVR runtime software architecture

* |nitial research prototype of GVR, with multi-version array and application-
managed error handling

* Functionality and performance explorations of user/kernel/hardware-based dirty
bit tracking within the Local Reliable Data Store

 GVR-enabled two Mantevo mini-apps

 Modeling of multi-version checkpoint scheme that shows multi-version
checkpoints critical for latent (“silent”) errors
* Please come and see our “When is multi-version checkpointing needed?”

poster in Poster Session 2 for details.

Linear Solver Studies

* Inject errors of different severity at different points in computation for PCG and
SOR

* Understand different methods for detecting injected errors

* Understand benefits of restoration rather than ignoring error
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Future Efforts

* Fully-capable, robust implementation

e Efficient implementation of redundant, distributed global-view data structure
e Efficient multi-version snapshot (e.g. compression)

 Experiments with co-design applications

* Collaboration with OS/runtime community for cross-layer error handling
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