
The Global View Resilience Model

Approach

GVR (Global View for Resilience)
• Exploits a global-view data model, which enables irregular, adaptive algorithms

and exascale variability
• Provides an abstraction of data representation which offers resilience and

seamless integration of various components of memory/storage hierarchy

Global-view Distributed Arrays

Processes

Non-uniform, Proportional Resilience
• Applications can specify which data are more important in order to manage

reliability overheads

Goals

Research Challenges

Impact

• Understand and create application-system partnership for flexible resilience
• Explore efficient implementation of resilient and multi-version data
• Create empirical understanding of GVR’s effectiveness and performance

requirements

• Resilient, globally-visible data store
• Incremental, portable approach to resilience for large-scale applications
• Flexible, application-managed cost and coverage for resilience

• Understand application needs for flexible, portable resilience and performance
• Design of API suitable for use by application/library developers and tools
• Achieve efficient GVR runtime implementation for multi-version memory and

flexible resilience
• Understand architecture support and its benefits
• Explore new opportunities created by GVR abstractions and its implementation

technologies

ASCR X-Stack Awards DE-SC0008603/57K68-00-145

Applications Runtime OS

Programming
Abstractions

Architecture

Open Reliability

Efficient Implementation

Multi-version Memory
• Computation phases form “versions” of data
• A program can obtain and recover from earlier versions if needed

Rollback & recompute if
uncorrected error

Parallel Computation proceeds from
phase to phase

Phases create new
logical versions

App-semantics
based recovery

Progress and Accomplishments

• Use cases and initial design of GVR API
• Design of GVR runtime software architecture
• Initial research prototype of GVR, with multi-version array and application-

managed error handling
• Functionality and performance explorations of user/kernel/hardware-based dirty

bit tracking within the Local Reliable Data Store
• GVR-enabled two Mantevo mini-apps
• Modeling of multi-version checkpoint scheme that shows multi-version

checkpoints critical for latent (“silent”) errors
• Please come and see our “When is multi-version checkpointing needed?”

poster in Poster Session 2 for details.

Future Efforts

• Fully-capable, robust implementation
• Efficient implementation of redundant, distributed global-view data structure
• Efficient multi-version snapshot (e.g. compression)
• Experiments with co-design applications
• Collaboration with OS/runtime community for cross-layer error handling

Zachary Rubenstein, Hajime Fujita, Guoming Lu, Aiman Fang, Ziming Zheng, Andrew A. Chien, University of Chicago;

Pavan Balaji, Kamil Iskra, Pete Beckman, James Dinan, Jeff Hammond, Argonne National Laboratory;

Robert Schreiber, Hewlett-Packard Labs

http://gvr.cs.uchicago.edu/

Example

// Array creation and initialization
GDS_alloc(GDS_PRIORITY_HIGH, &gds);
GDS_register_global_error_handler(gds,
 errorhandler);
// full_check is a comprehensive and expensive
// check provided by a user
GDS_register_global_error_check(gds,
 full_check);

void mainloop() {
 do_computation_and_communication(atoms);
 // lightweight error checking
 if (atoms_out_of_box(atoms)) {
 // switch to error handling mode

 GDS_raise_global_error(gds); }
 // preserve the important states
 GDS_put(atoms, gds);
 GDS_version_inc(gds); }

GDS_status_t errorhandler(GDS_gds_t gds) {
 // find a good version in the history
 do { GDS_move_to_prev(gds); }
 while (GDS_check_global_error(gds) != OK);
 // restore the states of atoms and resume
 GDS_get(atoms, gds);
 GDS_resume(gds); return OK;
}

Cross-layer Partnership (App, Runtime, OS, Architecture)
• Rich error checking and recovery, including application-managed ones
• Efficient error handling implementation at each layer

Detection and Recovery

Error Signalling
Error Recovery
Reliability Needs

Application

Hardware OS

Runtime (e.g. MPI…)

Traditional

Application

Runtime

Hardware

Scientist/Programmer

OS

Other
Runtimes

Global View Resilience

Background

• Widely accepted that Silicon scaling and low-voltage operation will produce
rising error rates

• Need for a new programming model and a tool which address resilience issues

• Pseudo-code from a molecular dynamics application

Library Approach
• Implemented as a library
• Can be used together with other libraries (e.g. MPI, Trilinos), allowing gradual

migration to existing applications
• Can be a backend of other libraries/programming models (e.g. CnC, UPC, etc…)

Linear Solver Studies

• Inject errors of different severity at different points in computation for PCG and
SOR

• Understand different methods for detecting injected errors
• Understand benefits of restoration rather than ignoring error

