The Global View Resilience Model

http://gvr.cs.uchicago.edu/

Zachary Rubenstein, Hajime Fujita, Guoming Lu, Aiman Fang, Ziming Zheng, Andrew A. Chien, University of Chicago;
Pavan Balaji, Kamil Iskra, Pete Beckman, James Dinan, Jeff Hammond, Argonne National Laboratory;

Robert Schreiber, Hewlett-Packard Labs

Background

* Widely accepted that Silicon scaling and low-voltage operation will produce
rising error rates
* Need for a new programming model and a tool which address resilience issues

Goals

Programming Open Reliability

o Abstractions , _
Applications [» Runtime [<—— OS | Architecture

Efficient Implementation

* Understand and create application-system partnership for flexible resilience

* Explore efficient implementation of resilient and multi-version data

* Create empirical understanding of GVR’s effectiveness and performance
requirements

Resilient, globally-visible data store
* Incremental, portable approach to resilience for large-scale applications
* Flexible, application-managed cost and coverage for resilience

Research Challenges

* Understand application needs for flexible, portable resilience and performance

* Design of APl suitable for use by application/library developers and tools

* Achieve efficient GVR runtime implementation for multi-version memory and
flexible resilience

* Understand architecture support and its benefits

* Explore new opportunities created by GVR abstractions and its implementation
technologies

Approach

GVR (Global View for Resilience)

* Exploits a global-view data model, which enables irregular, adaptive algorithms
and exascale variability

* Provides an abstraction of data representation which offers resilience and
seamless integration of various components of memory/storage hierarchy

Processes

Global-view Distributed Arrays

Non-uniform, Proportional Resilience
* Applications can specify which data are more important in order to manage
reliability overheads

Multi-version Memory
 Computation phases form “versions” of data
* A program can obtain and recover from earlier versions if needed

Parallel Computation proceeds from | |Phases create new
phase to phase logical versions

M " %W/X\ mm

W Wl

Rollback & recompute if W |App-semantics
uncorrected error based recovery

Library Approach

* Implemented as a library

* Can be used together with other libraries (e.g. MPI, Trilinos), allowing gradual
migration to existing applications

* Can be a backend of other libraries/programming models (e.g. CnC, UPC, etc...)

pcied | HE UNIVERSITY OF

& CHICAGO QD’
Argon neé

NATIONAL LABORATORY

Cross-layer Partnership (App, Runtime, OS, Architecture)
* Rich error checking and recovery, including application-managed ones
* Efficient error handling implementation at each layer

Scientist/Programmer

]
Application C Detection and Recovery APEL'CQEQrLy====Jﬁ
. === Error Signallin 1 31 "
Runtime (e.g. MPI...) Error Regcover;c/; Other ‘*—H pul I
— 0oL Runtimes Runtime | |
Reliability Needs I
HardwareQs== | 0% R \ ¢
ey [ey
Hardware O v!‘

Traditional

Global View Resilience

* Pseudo-code from a molecular dynamics application

GDS_raise_global _error(gds); }
// preserve the important states
GDS_put(atoms, gds);
GDS_version_inc(gds); }

// Array creation and initialization

GDS_alloc(GDS_PRIORITY HIGH, &gds);

GDS register _global _error_handler(gds,
errorhandler);

// full_check is a comprehensive and expensive

// check provided by a user

GDS register _global error_check(gds,

full_check);

GDS_status_t errorhandler(GDS _gds t gds) {

// find a good version in the history

do { GDS_move_to prev(gds); }

while (GDS check global error(gds) != OK);
void mainloop() { // restore the states of atoms and resume

do_computation_and_communication(atoms); GDS get(atoms, gds);

// lightweight error checking GDS resume(gds); return OK;

if (atoms_out_of box(atoms)) { }

// switch to error handling mode

Progress and Accomplishments

e Use cases and initial design of GVR API

e Design of GVR runtime software architecture

* |nitial research prototype of GVR, with multi-version array and application-
managed error handling

* Functionality and performance explorations of user/kernel/hardware-based dirty
bit tracking within the Local Reliable Data Store

 GVR-enabled two Mantevo mini-apps

 Modeling of multi-version checkpoint scheme that shows multi-version
checkpoints critical for latent (“silent”) errors
* Please come and see our “When is multi-version checkpointing needed?”

poster in Poster Session 2 for details.

Linear Solver Studies

* Inject errors of different severity at different points in computation for PCG and
SOR

* Understand different methods for detecting injected errors

* Understand benefits of restoration rather than ignoring error

Convergence v. Injection Time Given 4x Error Factor for SOR Czionvergence v. Injection Time Given 4x Error Factor for PCG .001

—Injection Time: 0.10 10
Injection Time: 0.30
—Injection Time: 0.50
Injection Time: 0.70
—Injection Time: 0.90 1071

—|njection Time: 0.10
Injection Time: 0.30
10+ |=Injection Time: 0.50
Injection Time: 0.70
—|njection Time: 0.90

Residual/lnitial Residual
Residual/Initial Residual
o

107

0.2 0.4 0.6 08 1 0 0.5 1 15 2 2.5 3
Proportion Iterations Complete Compared to Error-Free Execution

Proportion Iterations Complete Compared to Error-Free Execution

Future Efforts

* Fully-capable, robust implementation

e Efficient implementation of redundant, distributed global-view data structure
e Efficient multi-version snapshot (e.g. compression)

 Experiments with co-design applications

* Collaboration with OS/runtime community for cross-layer error handling

gﬂm@g U.S. DEPARTMENT OF Office of
ENERG Y' | Science

ASCR X-Stack Awards DE-SC0008603/57K68-00-145

