Elastic Fidelity: Trading-off Computational Accuracy for Energy Reduction

Georgios Tziantzioulis, Ali Murat Gok, S M Faisal, Ke Liu, Sourya Roy, Tyler Clemons, Nikos Hardavellas, Seda Ogrenci Memik, Srinivasan Parthasarathy

Trend: Increasing Power Dissipation
- Power dissipation becoming an unmanageable problem
- Computing’s energy consumption (2010): 408 TWh
- Google datacenters’ energy needs: 1/3 nuclear plant
- Datacenters carbon footprint: ~Czech Republic

Trend: Scaling Degrades Reliability
- Aggressive technology scaling degrades reliability
- Fabrication variation causes error surge
- Future computers will be built by inherently unreliable components

Thinking Beyond
- Question: What if we relax the guarantees on reliability and intentionally allow components of the processor to fail sometimes with tolerable error rates?
 - We can gain power savings at quadratic rate with voltage reduction.
 - We have to accommodate these timing errors in the architecture and software layers.

Elastic Fidelity Computing
- Different code and data segments of an application exhibit variable sensitivity to errors.
- Language constructs declare reliability requirements of each code/data segment.
- Hardware steers computation to components and adjusts their voltage to reach the reliability target.
- A program may still appear to execute correctly if it returns acceptable results from the user’s perspective, even if there are inaccuracies in the computation.

Simple Example
- imprecise[25%] int a[n];
 - int b[n];
- Execution units (e.g., ALUs)
- Fidelity requirement translated into voltage level
- Execute error-tolerant computation on low-voltage ALU
- Store error-tolerant data in low-voltage storage

Methodology
- Software wrappers inject errors in computations at run time to simulate elastic-fidelity ALUs.
- Software wrappers inject errors in loaded data at run time to simulate elastic-fidelity storage.
- Calculate the output quality by comparing the results of error-free and error-injected runs.

Summary
- Computing is unsustainable (energy, environment)
- Computing devices will sustain massive errors
- Elastic Fidelity: exploit the inherent error-tolerance of applications to lower the energy consumption, and withstand the massive errors of future computing.
 - Allow some data to be imprecise
 - Programming language constructs and ISA extensions pass the fidelity requirements from application to hardware
 - Hardware models adjust the voltage to maintain fidelity guarantees
 - The execution system steers imprecise computations to components with low voltage
- Error-tolerant data are stored at low-voltage storage

Power Consumption (JPEG-D)

Power & Energy Savings (JPEG-D)
- Processor limit study @ 50% Vdd (Gem5/McPAT):
 - 14% dynamic, 27% static power savings
- Cache limit study @ 70% Vdd (CACTI):
 - 23% dynamic energy savings, 14% static power savings; even higher by foregoing unnecessary ECC

McCormick
Northwestern Engineering