I/O Performance of Virtualized Cloud Environments

Devarshi Ghoshal,
Richard S. Canon, Lavanya Ramakrishnan
Data Volumes are Increasing

- Data is a critical component of scientific process
 - Joint Genome Institute projects about 2PB/year
 - Large Hydron Collider (LHC) projects 16PB/year
 - Large Synoptic Survey Telescope (LSST) projects 6PB/year of raw data

- Similar problem: Internet data
 - Terabytes to petabytes of data/day
 - Cloud is resource platform for these applications
 - MapReduce/Hadoop
 - On-demand virtual machines for processing
What is a Cloud?

- Cloud Infrastructure as a Service (IaaS)
 - Provision bare metal or virtual machine resources
 - Pay-as-you-go model
 - different quality of service levels might be available
 - User responsible for complete software stack
 - Storage options: Elastic Block Store, Ephemeral local disk, S3
Determine the appropriate role for commercial and/or private cloud computing for DOE/SC midrange workloads

Approach

• Deployed a distributed test bed at Argonne and NERSC to explore the use of clouds for mid-range scientific computing.

• Evaluated the effectiveness of cloud models for a wide spectrum of DOE/SC applications.
• Benchmarking I/O performance over different cloud and HPC platforms to identify major bottlenecks
 – Network and I/O related
 • Identified through prior Magellan research and other related efforts
• I/O Intensive
 – Low Disk Latency
 – High Bandwidth
 – High Speed Interconnection Network
 – Scalability
• Specialized infrastructure at supercomputing centers compared to cloud’s commodity infrastructure
Related work

- Disk I/O and Throughput on Amazon EC2
 - I/O benchmarking for different storage options available on Amazon’s EC2 cloud infrastructure
 - *Not sufficient data to understand impact on HPC apps*

- Performance Analysis of HPC applications on Amazon EC2
 - Focus on determining the performance of HPC applications on cloud
 - *No work on the effect of virtualization on I/O*
NERSC Machine Description

- 720 node IBM iDataPlex cluster
 - 40 nodes for I/O benchmarking
 - Each node has two quad-core Intel Nehalem processors running at 2.67 GHz, 24 GB RAM
 - 4X Quad Data Rate (QDR) Infiniband Technology
 - Batch Queue system
 - GPFS, peak performance of 15 GB/s
- VM instance type - c1.xlarge
Amazon EC2 Configuration

<table>
<thead>
<tr>
<th>Instance type</th>
<th>API name</th>
<th>CPU Family</th>
<th>EC2 Compute Units</th>
<th>Memory (GB)</th>
<th>Local Storage (GB)</th>
<th>Expected I/O Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>m1.small</td>
<td>Intel Xeon E5430</td>
<td>1</td>
<td>1.7</td>
<td>160</td>
<td>Moderate</td>
</tr>
<tr>
<td>Large</td>
<td>c1.xlarge</td>
<td>Intel Xeon E5410</td>
<td>20</td>
<td>7</td>
<td>1690</td>
<td>High</td>
</tr>
<tr>
<td>Cluster-compute</td>
<td>cc1.4xlarge</td>
<td>2 x Intel Xeon X5570</td>
<td>33</td>
<td>23</td>
<td>1690</td>
<td>Very High</td>
</tr>
</tbody>
</table>
• IOR (Interleaved or Random) benchmark
 – For testing performance of parallel file systems
 – Read and Write Performance
 – I/O type: Direct, Buffered
 – Low benchmarking overhead

• Timed I/O Benchmark
 – Performance measurements for a particular duration
 – Measurement results at specific time-intervals
Benchmark Parameters

- Types of I/O
 - Direct I/O vs Buffered I/O

- Virtual Machine Instance Types
 - Small, large and Cluster-compute instances

- Storage Devices
 - Local stores (ephemeral), EBS volumes

- Location of Instances
 - US-East and US-West regions

- Shared File-system
 - GPFS vs EBS volumes

- Time of run
Evaluation Summary

• Buffer Caching
• Comparison across all Platforms
• Effect of Regions on Amazon
• Multi-node Shared File-system
• 24-hour Tests
• Large Scale Tests
• Network bandwidth plays an important role in determining I/O performance.
• EBS performance is better on CC instances, due to 10 Gigabit Ethernet network.
Amazon EC2 (Write Performance)

West-zone instances outperform the East-zone instances in most cases
High resource contention degrades the EBS performance severely.
Occasional performance drop may be attributed to the underlying shared resources.
West-zone performance varies a lot compared to East-zone, but the average is lower.
Impact on applications

- Performance impact on I/O
- Suitable trade-offs between EBS and local disk
 - persistence vs performance
 - cost is another factor
- Application design needs to consider
 - performance variation
 - lack of high performance shared file system
Conclusions & Future Work

• Performance in VMs is lower than on physical machines
 – Clouds are not yet ready for data-intensive applications with high-performance requirements

• I/O performance on local disks is better than on EBS volumes
 – Local disks are ephemeral devices
 – Local disks are also not suitable to MPI (most commonly used in HPC applications)

• Timed results show substantial variations
 – Further investigation required
Acknowledgements

• US Department of Energy DE-AC02-05CH11232

• Krishna Muriki, Iwona Sakrejda, David Skinner
Questions?

Other related events at Supercomputing –

• At Lawrence Berkeley Booth
 • Science in the Cloud? Busting Common Myths about Clouds and Science Tue Nov 15 at 10:30 am
 • What do Clouds mean for Science? Experiences from the Magellan Project Tue Nov 15 at 11:15 am

• Papers
 • Evaluating Interconnect and Virtualization Performance for High Performance Computing, PMBS Workshop, Sun Nov 13 at 9 am.
 • Riding the Elephant: Managing Ensembles with Hadoop, MTAGS Workshop, Mon Nov 14 at 4:30 pm