Describing multiple aspects of cloud usage with excess entropy

100,000 servers is the simple part...

Charles Loboz
Windows Azure
cloboz@microsoft.com
Background: system size, complexity, body-of-knowledge

- Hardware: grouped in racks, clusters (of different types), cluster groups – and there is the network layer, reliability,

- Customers: different patterns – with tens of thousands of customers… you get them all – there are no ‘typical problems’

- Very small number of people to handle large volume of information – and consider hundreds of aspects on all levels – daily
Descriptors and higher-level descriptors

Averages, standard deviations - we do not have normal distribution of customer ‘size’ – even the aggregated usage is more volatile than a stock market index (Stor-data here)

The questions are not ‘what is the (average) utilization’:
 - which system components are overloaded (not just highly utilized)?
 - Is the load ‘well distributed’ – if not which element needs to be fixed?
 - On which days the load is different from other days?
Excess entropy

- Imbalance in computer systems – always important, never quantified
- We reach to economics and physics
- To get a formal description applicable to a range of situations

\[EE = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i}{x_{avg}} * \ln\left(\frac{x_i}{x_{avg}}\right) \]
Intra-day imbalance between clusters
Long-term imbalance of load between clusters
Components of system’s excess entropy

\[CEE = \sum_{m=1}^{M} f_m \times EE_m + \sum_{m=1}^{M} f_m \times \ln\left(\frac{avg_m}{avg_{tot}}\right) \]
Comparing contribution to volatility

Are Mondays different from Saturdays?

Egres: between-days weekly contribution for days 1 and 6

Diagram:
- Bar chart showing frequency distribution of between-day contribution (scaled) for days 1 and 6.
System and component imbalance

normalized imbalance coefficient T_x

dotted: cl1, dashed: cl2, solid: cl3, thick solid: composite
Excess entropy – why

- Dimensionless, normalizable, composable
- Applicable across wide range of problems
- Can compare apples to chocolate – because it compares *inequality* of apples with *inequality* of chocolate
- One formula – multitude of interpretations (all correct and numerically equivalent – like quantum mechanics 😊)
- Inequality, imbalance, concentration…
 disproportion, asymmetry, flocking, variation(?), distribution(?)
Some other interpretations…

[The Theil index can be interpreted] as the expected information content of the indirect message which transforms the population shares as prior probabilities into the income shares as posterior probabilities. Henri Theil (1967:125-126) [4] [close to Nobel 1969]

But the fact remains that [the Theil index] is an arbitrary formula, and the average of the logarithms of the reciprocals of income shares weighted by income is not a measure that is exactly overflowing with intuitive sense. Amartya Sen (1997:36)[6] [Nobel 1998]

Or we can just think about it as excess entropy 😊
Excess entropy – gotchas

- Context dependent
 - Consider carefully what is the underlying measure: example of customers and deployments

- Direction-insensitive
 - (almost) – sensitive to difference from average

- Requires underlying data > 0

- Logarithmic, not linear

- Order-independent – important for time series
Summary – excess entropy application

- versatile
- multi-level
- handles systems and subsystems
- intuitive in most contexts
- operationally scalable
- can be fine-tuned for other inequality tests
- allows new aggregate descriptions (views) of complex systems